
Mechanical Veri�cation of Timed Automata: A Case Study�

To appear as NRL Memorandum Report NRL/MR/5546{98-8180

Myla Archer and Constance Heitmeyer

Code 5546, Naval Research Laboratory, Washington, DC 20375

farcher, heitmeyerg@itd.nrl.navy.mil

April 30, 1998

Abstract

This report describes the results of a case study on the feasibility of developing and applying mechanical
methods, based on the proof system PVS, to prove propositions about real-time systems speci�ed in the
Lynch-Vaandrager timed automata model. In using automated provers to prove propositions about systems
described by a speci�c mathematical model, both the proofs and the proof process can be simpli�ed by
exploiting the special properties of the mathematical model. Because both speci�cations and methods of
reasoning about them tend to be repetitive, the use of a standard template for speci�cations, accompanied
by standard shared theories and standard proof strategies or tactics, is often feasible. Presented are the
PVS speci�cation of three theories that underlie the timed automata model, a template for specifying timed
automata models in PVS, and an example of its instantiation. Both hand proofs and the corresponding
PVS proofs of two propositions are provided to illustrate how these can be made parallel at di�erent degrees
of granularity. Our experience in applying PVS to specify and reason about real-time systems modeled as
timed automata is also discussed. The methods for reasoning about timed automata in PVS developed in
the study have evolved into a system called TAME (Timed Automata Modeling Environment). A summary
of recent developments regarding TAME is provided. A shorter version of the report was presented at the
1996 Real-Time Applications Symposium [1].

�This work is funded by the O�ce of Naval Research.

ii

Contents

1 Introduction 1

2 Background 2

2.1 The Generalized Railroad Crossing Problem : 2
2.2 The Timed Automata Model : 2
2.3 PVS : 3

3 Underlying Theories for Timed Automata 4

3.1 The Theory machine : 4
3.2 The Theory states : 5
3.3 The Theory time thy : 5

4 A Template for Timed Automata Models 6

4.1 What the Template Looks Like : 6
4.2 Instantiating the Template : 8

5 Two Examples of Proofs 10

5.1 Proof of the Induction Principle : 10
5.2 Proof of the Safety Property : 13

6 Summary of Results 15

6.1 Using Template Speci�cations : 15
6.2 Repeated Patterns in Timed Automaton Proofs : 16
6.3 Repeated Patterns in Using PVS : 17
6.4 Expressing and Proving Real-Time Properties : 19

7 Related Work 19

8 Conclusions 20

9 TAME: Recent Developments 21

A Appendix. The Theory atexecs: Admissible Timed Executions 25

B Appendix. Specifying the GRC Timed Automata Solution in PVS 27

B.1 Appendix. The Full Theory of Trains in PVS : 28
B.2 Appendix. Representing the Automaton AxSpec in PVS : 30
B.3 Appendix. The Timed Automaton OpSpec in PVS: Version 1 : : : : : : : : : : : : : : : : : : 33
B.4 Appendix. The Timed Automaton SystImpl in PVS : 41

C Appendix. PVS Strategies for Timed Automata 45

D Appendix. PVS Proofs of State Invariants 56

E Appendix. Lessons from the PVS Proof of Lemma E.1 61

E.1 The PVS Proof of Lemma E.1 with Annotations : 61
E.2 Potential New Strategies for Lemma E.1 from PVS Enhancements : : : : : : : : : : : : : : : 67

F Appendix. A Second PVS Template for Timed Automata 70

F.1 Appendix. The Theory timed auto decls : 70
F.2 Appendix. The Timed Automaton OpSpec in PVS: Version 2 : : : : : : : : : : : : : : : : : : 72

iii

List of Figures

1 The Theory machine : 4
2 The Theory states : 5
3 The Theory time thy : 6
4 A Timed Automaton Template : 7
5 The Timed Automaton Trains : 8
6 Instantiating the Template : 9
7 A Detailed Hand Proof : 10
8 PVS Translation of a Detailed Hand Proof : 11
9 The PVS Proof Bu�er : 12
10 A Translation Using GRIND : 13
11 Translating the Proof of the Safety Property : 14
12 Updated TAME Proof of the Safety Property : 22

iv

1 Introduction

Researchers have proposed many innovative formal methods for developing real-time systems [14]. Such
methods are intended to give system developers and customers greater con�dence that real-time systems
satisfy their requirements, especially their critical requirements. However, applying formal methods to
practical systems raises a number of challenges:

1. How can the artifacts produced in applying formal methods (e.g., formal descriptions, formal proofs) be
made understandable to the developers?

2. To what extent can software developers use the formal methods, including formal proof methods?

3. What kinds of tools can aid developers in applying formal methods?

The purpose of this report is to describe the results of a case study in which these issues were investigated.
In particular, we are interested in how a mechanical proof system can support formal reasoning about real-
time systems using a speci�c mathematical model. By validating human proofs of timing properties, such a
system can increase con�dence that a given speci�cation satis�es critical properties of interest.

In the case study, we applied the mechanical proof system PVS [31, 33] to a solution of the Generalized
Railroad Crossing (GRC) problem [16, 12, 13]. The solution is based on the Lynch-Vaandrager timed
automata model [28, 27] and uses invariant and simulation mapping techniques. Our approach, which
should generalize to proving properties about real-time systems speci�ed in any model, was to develop a
template, containing a set of common theories, a common structure, and specialized proof strategies, useful
in constructing timed automata models and proving properties about them. To specify a particular timed
automata model and its properties, the user �lls in the template. The user then may use the proof system
to verify that the model satis�es the properties. This approach simpli�es both the speci�cation process and
the proof process because users can reason in a specialized domain, the timed automata model; they need
not master the base logic and the user interface of the full automatic proof system. The techniques we
have developed using this approach have become the basis for a tool TAME (Timed Automata Modelling
Environment), which we are continuing to develop.

Like other approaches to formal reasoning about real-time systems, such as SMV [29, 8], HyTech [18],
and COSPAN [19], our approach is based on a formal automatamodel. Moreover, like these other approaches,
our methods can be used to prove properties of particular automata and, like COSPAN, to prove simulations
between automata. However, our approach is di�erent from other approaches in two major ways. First, the
properties we prove are expressed in a standard logic with universal and existential quanti�cation. This is
in contrast to most other approaches, where the properties to be proved are expressed either in a temporal
logic, such as CTL or Ictl, or in terms of automata. Second, unlike other automata-based methods, the
generation of proofs in our method is not completely automatic. Rather, our method supports the checking
of human-developed proofs of the properties based on deductive reasoning. By this means, and by providing
templates for developing speci�cations, we largely eliminate the need for ingenuity in expressing a problem
using the special notations and special logics of a veri�cation system.

Requiring some interaction with an automatic theorem prover does demand a higher level of sophistication
from the user. But by supporting reasoning about automata at a high level of abstraction, we make it possible
to prove more powerful results than can be done with tools requiring more concrete descriptions of automata
and avoid the state explosion problem inherent in other automata-based approaches.

In our approach, each mechanically generated proof closely follows a corresponding English language
proof. Such a proof is more likely to be understandable and convincing to developers familiar with the
specialized timed automata domain and comfortable with English language proofs. Our study identi�ed
proof techniques, such as induction, that were most useful in proofs about timed automata models. We
designed PVS strategies that automatically do the standard parts of proofs having a standard structure. A
major goal was to develop PVS versions of hand proofs that could be understood and, in some cases, even
produced using appropriate tools, by domain experts who are able to understand hand proofs but who are
not PVS experts.

In Section 2, the report reviews the GRC benchmark, the timed automata model, and PVS. Section 3
presents three theories that underlie the timed automata model and gives their representation in PVS. One

1

of these theories, the theory machine, contains as a theorem the induction principle used to prove state
invariants in the timed automata model. Section 4 presents a template for de�ning timed automata models
in PVS and an example of how the template can be instantiated to specify the Trains component of the
timed automata solution of the GRC. Section 5 presents a hand proof and the corresponding PVS proof of
the induction principle given in the theory machine. To illustrate how our approach can be used to check
a complex proof, Section 5 presents the hand proof of the Safety Property (see the GRC problem statement
below) along with the corresponding PVS proof. Sections 6, 7 and 8 present major results of our case study,
a discussion of related work, and some early conclusions. Section 9 gives an overview of recent developments
regarding TAME.

Additional detail on the work done in the study is provided in the appendices. Appendix A presents
the theory atexecs of admissible timed executions of timed automata, the fourth underlying theory for the
timed automata model. Appendix B contains the full speci�cations of four example timed automata from
[13, 12]. Appendix C presents the PVS strategies that were used in proofs of properties of the example timed
automata. The full set of proofs of state invariants of the example timed automata is shown in Appendix D.
An example ad hoc proof of a property of admissible timed executions of timed automata, together with a
discussion of feasibility of better PVS strategies to support it and similar proofs, is presented in Appendix E.
Appendix F exhibits an alternative timed automaton template with an example of its use.

A briefer version of this report can be found in [1].

2 Background

2.1 The Generalized Railroad Crossing Problem

The purpose of the GRC problem is to provide a benchmark for comparing di�erent real-time formalisms.
Although it is a \toy" problem, the di�erent speci�cations and solutions of the GRC benchmark provide
many insights into the strengths and weaknesses of di�erent formal approaches for representing and reasoning
about real-time systems. The problem statement is as follows:

The system to be developed operates a gate at a railroad crossing. The railroad crossing I lies in a region
of interest R, i.e., I � R. A set of trains travel through R on multiple tracks in both directions. A sensor

system determines when each train enters and exits region R. To describe the system formally, we de�ne a

gate function g(t) 2 [0; 90], where g(t) = 0 means the gate is down and g(t) = 90 means the gate is up. We
de�ne a set f�ig of occupancy intervals, where each occupancy interval is a time interval during which one

or more trains are in I. The ith occupancy interval is represented as �i = [�i; �i], where �i is the time of the

ith entry of a train into the crossing when no other train is in the crossing and �i is the �rst time since �i
that no train is in the crossing (i.e., the train that entered at �i has exited, as have any trains that entered

the crossing after �i).

Given two constants �1 and �2, �1 > 0; �2 > 0; the problem is to develop a system to operate the crossing
gate that satis�es the following two properties:

Safety Property: t 2 [i�i) g(t) = 0 (Gate is down during all occupancy intervals.)

Utility Property: t 62 [i[�i � �1; �i + �2]) g(t) = 90 (Gate is up when no train is in I.)

2.2 The Timed Automata Model

The formal model used in [12, 13] to specify the GRC problem and to develop and verify a solution represents
both the computer system and its environment as timed automata, according to the de�nitions of Lynch and
Vaandrager [28, 27]. A timed automaton is a very general automaton, i.e., a labeled transition system.
It need not be �nite-state: for example, the state can contain real-valued information such as the current
time or the position of a train or crossing gate. This makes timed automata suitable for modeling not only
computer systems but also real-world entities such as trains and gates. The timed automata model describes
a system as a set of timed automata, interacting by means of common actions. In solving the GRC problem
using timed automata, separate timed automata represent the trains, the gate, and the computer system; the
common actions are sensors reporting the arrival of trains and actuators controlling the raising and lowering
of the gate. Below, we de�ne the special case of timed automata, based on the de�nitions in [12, 13], which
we used in our case study.

2

Timed Automata. A timed automaton A consists of �ve components:

� states(A) is a (�nite or in�nite) set of states.

� start(A) � states(A) is a nonempty (�nite or in�nite) set of start states.

� A mapping now from states(A) to R�0, the non-negative real numbers.

� acts(A) is a set of actions (or events), which include special time-passage actions �(�t), where �t is a positive

real number, and non-time-passage actions, classi�ed as input and output actions, which are visible, and internal
actions.

� steps(A) : states(A)� acts(A)! states(A) is a partial function that de�nes the possible steps (i.e., transitions).

This is a restricted de�nition that requires steps(A) to be a function. The most general de�nition of
timed automata permits steps(A) to be an arbitrary relation. Straightforward modi�cations to our approach
would handle the general case.

Timed Executions and Reachability. A trajectory is either a single state or a continuous series of states
connected by time passage events. A timed execution fragment is a �nite or in�nite alternating sequence
� = w0�1w1�2w2 � � �, where each wj is a trajectory and each �j is a non-time-passage action that \connects"
the �nal state s of the preceding trajectory wj�1 with the initial state s0 of the following trajectory wj. A
timed execution is a timed execution fragment in which the initial state of the �rst trajectory is a start state.
A state of a timed automaton is de�ned to be reachable if it is the �nal state of the �nal trajectory in some
�nite timed execution of the automaton.

A timed execution is admissible if the total amount of time-passage is in�nity. We use the notation
atexecs(A) to represent the set of admissible timed executions of timed automaton A. The notion of ad-
missible timed executions is important in expressing the Utility Property (and other properties de�ned over
time intervals rather than time points) and in de�ning simulation relations between timed automata.

MMT Automata. An MMT automaton [30, 25, 24] is a special case of the general Lynch-Vaandrager
timed automata model, whose states can be represented as having a \basic" part representing the state of
an underlying I/O automaton [26], a current time component now, and �rst and last components that de�ne
lower and upper time bounds on each action.

Invariants and Simulation Mappings. An invariant of a timed automaton is any property that is true
of all reachable states, or equivalently, any set of states that contains all the reachable states. A simulation

mapping [28, 27, 24] relates the states of one timed automatonA to the states of another timed automatonB
with the same visible actions in such a way that the visible actions and their timings in any admissible timed
execution of A correspond to those in some admissible timed execution of B. The existence of a simulation
mapping from A to B thus implies that each visible behavior of automaton A is contained in the set of
visible behaviors of automaton B. Proofs of both state invariants and simulation mappings have a standard
structure with a base case involving start states and a case for each possible action.

2.3 PVS

The following description of PVS is taken from [35]:

PVS (Prototype Veri�cation System) [33] is an environment for speci�cation and veri�cation that has been

developed at SRI International's Computer Science Laboratory. In comparison to other widely used veri�-

cation systems, such as HOL [11] and the Boyer-Moore prover [7], the distinguishing characteristic of PVS
is that it supports both a highly expressive speci�cation language and a very e�ective interactive theorem

prover in which most of the low-level proof steps are automated. The system consists of a speci�cation lan-

guage, a parser, a type checker, and an interactive proof checker. The PVS speci�cation language is based on
higher-order logic with a richly expressive type system so that a number of semantic errors in speci�cation

can be caught by the type checker. The PVS prover consists of a powerful collection of inference steps that

can be used to reduce a proof goal to simpler subgoals that can be discharged automatically by the primitive
proof steps of the prover. The primitive proof steps involve, among other things, the use of arithmetic and

equality decision procedures, automatic rewriting, and BDD-based boolean simpli�cation.

3

hh
machine [states, actions: TYPE,

enabled: [actions,states −> bool],
trans: [actions,states −> states],
start: [states −> bool]] : THEORY

BEGIN
s,s1: VAR states
a: VAR actions
n,n1: VAR nat

Inv: VAR [states −> bool];

reachable_hidden(s,n): RECURSIVE bool =
IF n = 0 THEN start(s)
ELSE (EXISTS a, s1: reachable_hidden(s1,n − 1) & enabled(a,s1) & s = trans(a,s1))
ENDIF
MEASURE n

reachable(s): bool = (EXISTS n: reachable_hidden(s,n))

base(Inv) : bool = (FORALL s: start(s) => Inv(s))

inductstep(Inv) : bool =
(FORALL s, a: reachable(s) & Inv(s) & enabled(a,s) => Inv(trans(a,s)))

inductthm(Inv): bool = base(Inv) & inductstep(Inv) => (FORALL s: reachable(s) => Inv(s))

machine_induct: THEOREM (FORALL Inv: inductthm(Inv))

END machinehh

Figure 1: The Theory machine.

A major goal of our study was to evaluate PVS as a basis for suitable theorem proving support for establishing
properties of speci�cations in our specialized domain. Our experience with PVS is summarized in Section 8.

3 Underlying Theories for Timed Automata

Our approach to specifying timed automata in PVS is to use a template that de�nes a set of underlying
theories and provides a standard framework and standard names and de�nitions for each speci�cation. The
standard framework can be de�ned in more than one way. In Section 6, we discuss the tradeo�s in selecting
a framework. Below, we introduce three underlying theories shared by all timed automata: the theory
machine, which contains as a theorem the induction principle upon which we base our specialized induction
strategies; the theory states, which de�nes the components of states; and the theory time thy, which uses
the extended non-negative real numbers to represent time values.1

3.1 The Theory machine

Figure 1 shows the PVS speci�cation of the theory machine. This theory, which de�nes the meaning of
mathematical induction in the context of the timed automata model, is the core of our general PVS strategy
for performing the standard steps of state invariant proofs. It is also of interest because Section 5 uses
the proof of the induction principle as an example of how a hand proof can be translated into PVS. The
theory consists of the induction principle along with the de�nitions needed for its statement. Most of these
de�nitions are straightforward.

The theory has the �ve parameters needed to de�ne a timed automaton: states, the automaton's states;
actions, its input alphabet; start, its start states; enabled, the guards on state transitions; and trans, the
automaton's transition function. The two parameters states and actions are simply type parameters. The

1An additional theory, atexecs, which we do not need for the examples in Section 5, de�nes atexecs(A), the admissible
timed traces of automaton A. We present this theory in Appendix A.

4

hh
states [actions, MMTstates, time : TYPE, fin_pred : [time −> bool]] : THEORY

BEGIN

states: TYPE = [# basic: MMTstates, now: (fin_pred), first, last: [actions −> time] #]

END stateshh

Figure 2: The Theory states.

actual parameters in an instantiation of the template are the states and actions types (i.e., the sets of possible
values of states and actions) of some particular timed automaton. The parameter start is instantiated by
a predicate on states true only for start states, and the parameter enabled by a predicate on actions and
states true only when the action is enabled in the state. The parameter trans is instantiated by a function
that maps an action and a state to a new state. Together, enabled and trans de�ne the steps of the timed
automaton.

The body of the theory describes six predicates used to de�ne the induction principle. The �rst predicate
Inv represents an arbitrary predicate (i.e., an invariant) on states. The second predicate reachable hidden is
true of a state s and natural number n if s is reachable from a start state in n steps. The MEASURE clause
of this de�nition permits PVS to verify during type checking that the predicate reachable hidden is always
well de�ned, i.e., that its (recursive) de�nition terminates on all arguments. The predicate reachable is true
of a state s if reachable hidden is true for s and some natural number n. (We have proved in PVS that this
de�nition of reachability is equivalent to the de�nition given in Section 2.2.2) The next two predicates de�ne
the two parts of the induction principle: base, which states that the given invariant holds for the base case,
and inductstep, which states that the invariant is preserved by every enabled action on a reachable state.
Finally, the predicate inductthm on invariants states that an invariant is true if it holds in the base case and
is preserved in the induction step.

3.2 The Theory states

Figure 2 gives the PVS speci�cation of the very simple theory states. The main purpose of this theory is to
de�ne a standard record structure and standard temporal information for the states of an automaton. The
theory has four parameters. The �rst three, actions, MMTstates, and time, are type parameters. The fourth
parameter �n pred is a predicate that is true if its argument, a time value, is �nite.

The body of the theory contains a single statement de�ning the record structure of a state. The theory
requires that a state contain a basic component, a time component, and components �rst and last representing
time restrictions on speci�ed actions. In PVS, the symbols \[# � � �#]" are record brackets. The basic

component contains all of the nontimed information in the state along with any nonstandard absolute time
markers. The now component is an element of type time satisfying the predicate �n pred (that is, now is
�nite). The �rst and last components specify the upper and lower time bounds on each action.3

Both the theory machine and the theory states have parameters that are functions. The ability to de�ne
a theory with function parameters and to de�ne states with components that are functions exists because
PVS has a higher-order logic. In general, using a higher-order logic facilitates the creation of template
speci�cations. Section 8 describes other advantages of a higher-order logic.

3.3 The Theory time thy

Figure 3 gives the PVS speci�cation of the data type time and the theory time thy. In a timed automaton,
each state has an associated time in R�0. However, in the time bounds associated with actions, in�nity is
allowed as a time value to represent the case when no �nal deadline on an action exists. Thus, to represent
time in our template, we require the union type, R�0

[f1g.

2See Lemma reachability in the theory opspec atexecs aux in Appendix B.3.
3Although the type states is designed to make it easy to express an MMT automaton as a timed automaton, it is general

enough for any timed automaton.

5

hh
time: DATATYPE

BEGIN

fintime(dur:{r:real|r>=0}): fintime?
infinity: inftime?

END time

time_thy: THEORY

BEGIN

IMPORTING time

zero: time = fintime(0);

<= (t1,t2:time):bool = IF fintime?(t1) & fintime?(t2) THEN dur(t1) <= dur(t2)
ELSE inftime?(t2) ENDIF;

>= (t1,t2:time):bool = IF fintime?(t1) & fintime?(t2) THEN dur(t1) >= dur(t2)
ELSE inftime?(t1) ENDIF;

< (t1,t2:time):bool = IF fintime?(t1) & fintime?(t2) THEN dur(t1) < dur(t2)
ELSE NOT(inftime?(t1)) & inftime?(t2) ENDIF;

> (t1,t2:time):bool = IF fintime?(t1) & fintime?(t2) THEN dur(t1) > dur(t2)
ELSE NOT(inftime?(t2)) & inftime?(t1) ENDIF;

+ (t1,t2:time):time = IF fintime?(t1) & fintime?(t2) THEN fintime(dur(t1) + dur(t2))
ELSE infinity ENDIF;

− (t1:time, t2:(fintime?)):time =
IF fintime?(t1) & dur(t1) >= dur(t2) THEN fintime(dur(t1) − dur(t2))
ELSE infinity ENDIF;

END time_thyhh

Figure 3: The Theory time thy and the Data Type time.

Like many other strongly typed languages, the PVS speci�cation language represents union types using
abstract data type de�nitions reminiscent of traditional algebraic speci�cations. In PVS, these de�nitions
consist of a line for each constructor which speci�es the constructor name, names and types for each ar-
gument (if any) to the constructor, and a predicate that recognizes elements of the data type built using
the constructor.4 We thus de�ne the type time as a PVS data type. (Later, we de�ne another part of our
template, the type actions, as a PVS data type; its de�nition is similarly understood.)

The data type time has two constructors. The �rst constructor, �ntime, has a non-negative real parameter
dur and the recognizer �ntime?, and the second constructor, in�nity, has no parameters and the recognizer
inftime?. The PVS prover recognizes the following assertions as true:

dur(�ntime(x)) = x (for any x 2 R�0)
�ntime?(�ntime(x)) (for any x 2 R�0)
inftime?(in�nity)

The theory time thy contains the de�nitions of the standard arithmetic operators and predicates for time
values. Note that we have exploited the support PVS provides for overloading names.

4 A Template for Timed Automata Models

4.1 What the Template Looks Like

Figure 4 shows one template we have developed for de�ning a timed automata model in PVS. The tem-
plate imports appropriate instantiations of the �xed theories time thy, states, and machine. The theory
time thy appears �rst in the template because it has no parameters. The two remaining theories, states
and machine, appear later in the template because their parameters must �rst be de�ned. The template

4When processing a datatype declaration, the PVS typechecker generates individual declarations for all the constructors,
their arguments, and their recognizers, together with axioms de�ning their relationships, an induction axiom, etc.

6

hh
<timed-automaton name>: THEORY

BEGIN

IMPORTING time_thy

actions : DATATYPE

BEGIN
nu(timeof:(fintime?)): nu?
<...>

END actions;

MMTstates: TYPE = <...>

IMPORTING states[actions,MMTstates,time,fintime?]

OKstate? (s:states): bool = <...> ;

enabled_general (a:actions, s:states):bool = now(s) >= first(s)(a) & now(s) <= last(s)(a);

enabled_specific (a:actions, s:states):bool =
CASES a OF
nu(delta_t): (delta_t > zero & <...>),
<...>

ENDCASES;

trans (a:actions, s:states):states =
CASES a OF
nu(delta_t): s WITH [now := now(s)+delta_t],
<...>

ENDCASES;

enabled (a:actions, s:states):bool =
enabled_general(a,s) & enabled_specific(a,s) & OKstate?(trans(a,s));

start (s:states):bool = (now(s) = zero) & <...> ;

IMPORTING machine[states, actions, enabled, trans, start]

END <timed-automaton name>hh

Figure 4: A Template for Specifying Timed Automata Models.

is instantiated by �lling in the missing parts and adding any desired auxiliary declarations and de�nitions.
The missing parts are represented in Figure 4 by the symbol \< : : : >".5

Before the theory states can be imported, two of its parameters, actions and MMTstates, must be
de�ned. The type actions is de�ned as a data type with one constructor, the time passage action nu, which
is an action associated with every timed automata model. The corresponding parameter extractor, called
timeof, is declared as an element of type time that satis�es the predicate �ntime?. The symbol \< : : : >"
is a placeholder for the other (non-time-passage) actions associated with a given timed automaton. The
type of the basic component of an element of type states is MMTstates. The symbol \< : : : >" that follows
\MMTstates: TYPE =" is a place holder for the nondefault part of the state of the timed automaton,
typically a record structure. Once actions and MMTstates are de�ned, the type states can be de�ned by
importing the appropriate instance of the theory states.

One proceeds in a similar fashion before importing the theory machine. The de�nition of the predicate
enabled divides naturally into three parts. The �rst part, enabled general, is the same for all timed automata;
it de�nes the time bounds associated with actions. In particular, if the automaton is in state s, its time
now(s) allows action a to occur if it is bounded below by �rst(s)(a) and above by last(s)(a). The second
part, called enabled speci�c, restricts the time passage action nu to positive values and provides place holders
for other restrictions on when actions are enabled in a given timed automaton. The third part is de�ned by
the predicate OKstate? on states, which provides an optional mechanism for enforcing a state invariant by
�at. In the transition function trans, the de�nition of \nu(delta t)" is the same for all timed automata: as
expressed by the WITH construct, the e�ect of a time passage action is simply to update the now component

5The form of the template to use, as well as that of the missing parts, depends on how adherence to the template conventions
is enforced. Section 6 discusses this issue. An alternate template is presented in Appendix F.

7

of the state.6 The remaining action cases for a particular timed automaton must be supplied. Finally, the
partial declaration of the predicate start(s) indicates that it must enforce the requirement now(s) = zero.

We introduce an additional convention in our timed automaton template to make our proof strategies
simpler: State invariants are assigned names of the form Inv <name>, and the associated state invariant
lemma (or theorem) is called lemma <name> (or theorem <name>). The PVS proof of the Safety Property
in Section 5 uses this convention.

4.2 Instantiating the Template

To illustrate an instantiation of the template, we use the template to specify in PVS the timed automaton
Trains, a component of the timed automata solution of the GRC problem. Before presenting the PVS
speci�cation, we present the original speci�cation of Trains, extracted from [13]. The timed automaton
Trains has no input actions, three output actions, enterR(r), enterI(r), and exit(r), for each train r, and
the time passage action �(�t). The basic component of each train's state is the status component, which
simply describes where the train is. Each train's state also includes a current time component now, and �rst

and last components for each action, giving the earliest and latest times at which an action can occur once
enabled.

The state transitions of Trains are described by specifying the \Precondition" under which each action can
occur and the \E�ect" of each action. s denotes the state before the event occurs, and s0 the state afterwards.
The transition function contains conditions that enforce the bound assumptions; that is, an event cannot
happen before its �rst time, and time cannot pass beyond any last time. In the Trains speci�cation, only
the state components now and �rst(enterI(r)) and last(enterI(r)) for each r contain nontrivial information,
so the other cases are ignored. Note that the time that enterI(r) occurs is always no sooner than "1 and
no later than "2 after the train r entered the region P . The states and transitions of the timed automaton
Trains are shown in Figure 5.

hh

State:
now, a nonnegative real, initially 0
for each train r :

r.status ∈ {not-here, P, I}, initially not-here
first(enterI(r)), a nonnegative real, initially 0
last(enterI(r)), a nonnegative real or ∞, initially ∞

Transitions:
enterR(r) enterI(r)

Precondition: Precondition:
s.r.status = P s.r.status = P

Effect: s.now ≥ s.first(enterI(r))
s ′.r.status = P Effect:
s ′.first(enterI(r)) = now + ε1 s ′.r.status = I
s ′.last(enterI(r)) = now + ε2 s ′.first(enterI(r)) = 0

s ′.last(enterI(r)) = ∞
exit(r) ν(∆t)

Precondition: Precondition:
s.r.status = I for all r ,

Effect: s.now + ∆t ≤ s.last(enterI(r))
s ′.r.status = not-here Effect:

s ′.now = s.now + ∆t
hh

Figure 5: States and Transitions of the Timed Automaton Trains.

6The template we present here thus restricts the time passage action more than does the model we described in Section
2.2. Sometimes, as in the railroad crossing solution with a continuous gate action described in [12], one wants to allow other
components of the state besides the now component to change during time passage. An obvious modi�cation of our template
would permit our template to support the description of these more general timed automata.

8

hh
trains: THEORY
BEGIN
IMPORTING time_thy
delta_t: VAR (fintime?);
eps_1, eps_2: (fintime?);
train: TYPE;
r: VAR train;
actions : DATATYPE
BEGIN

nu(timeof:(fintime?)): nu?
enterR(Rtrainof:train): enterR?
enterI(Itrainof:train): enterI?
exit(Etrainof:train): exit?

END actions;
a: VAR actions;
status: TYPE = {not_here,P,I};
MMTstates: TYPE = [train −> status];
IMPORTING states[actions,MMTstates,time,fintime?]
status(r:train, s:states):status = basic(s)(r);
OKstate? (s:states): bool = true ;
enabled_general (a:actions, s:states):bool = now(s) >= first(s)(a) & now(s) <= last(s)(a);
enabled_specific (a:actions, s:states):bool =

CASES a OF
nu(delta_t): (delta_t > zero & (FORALL r: now(s) + delta_t <= last(s)(enterI(r)))),
enterR(r): status(r,s) = not_here,
enterI(r): status(r,s) = P & first(s)(a) <= now(s),
exit(r): status(r,s) = I,

ENDCASES
trans (a:actions, s:states):states =

CASES a OF
nu(delta_t): s WITH [now := now(s)+delta_t],
enterR(r): (# basic := basic(s) WITH [r := P], now := now(s),

first := first(s) WITH [(enterI(r)) := now(s)+eps_1],
last := last(s) WITH [(enterI(r)) := now(s)+eps_2] #),

enterI(r): (# basic := basic(s) WITH [r := I], now := now(s),
first := first(s) WITH [(enterI(r)) := zero],
last := last(s) WITH [(enterI(r)) := infinity] #),

exit(r): s WITH [basic := basic(s) WITH [r := not_here]]
ENDCASES;

enabled (a:actions, s:states):bool =
enabled_general(a,s) & enabled_specific(a,s) & OKstate?(trans(a,s));

start (s:states):bool = (s = (# basic := (LAMBDA r: not_here), now := zero,
first := (LAMBDA a: zero), last := (LAMBDA a: infinity) #));

IMPORTING machine[states, actions, enabled, trans, start]
END trainshh

Figure 6: Instantiating the Template to Specify Trains.

Figure 6 uses our template to specify the Trains automaton in PVS. In addition to the time passage
action nu, the instantiation contains the three output actions, enterR(r), enterI(r), and exit(r), for each
train r. The basic component of each train's state, which has type status, has the value not here, P, or I.7

The predicate enabled speci�c captures the \Preconditions" and the function trans captures the \E�ects"
shown in the above speci�cation. Note the lower and upper bounds, eps 1 and eps 2, on the action enterI(r)

established by the action enterR(r). Also note the initialization of the start states with the basic component
set to not here, the now component to zero (thus ful�lling the template requirement), and the �rst and

7In this simple example, we were able to de�ne the type MMTstates of the automaton basic state as a simple function type,
rather than the more typical record type used in AxSpec, OpSpec, and SystImpl (see Appendix B).

9

last components to zero and in�nity, respectively. Our template instantiation also includes some auxiliary
declarations, such as the types trains and status needed to de�ne the type MMTstates, and the function
status(r; s), which retrieves the value of the status component of train r in state s.

5 Two Examples of Proofs

To illustrate the correspondence between a hand proof and a PVS proof, this section presents example hand
proofs and corresponding PVS proofs of two results. The �rst hand proof is a proof of the induction principle
presented in Section 3.1. The second is a proof of the Safety Property taken from the technical report [12].

5.1 Proof of the Induction Principle

The �rst hand proof establishes an essential component of the support we provide for developing PVS proofs
for timed automata, namely, the induction principle. This example illustrates how a very detailed hand
proof can be translated almost directly into a PVS proof. At the same time, it illustrates the need to bring
additional knowledge to the prover at points where the hand proof implicitly appeals to human knowledge
and experience.

Figure 7 gives our detailed hand proof of the induction principle, while Figure 8 presents our best PVS
approximation to that proof. A systematic method for translating much of the hand proof to the PVS proof
maps short proof steps to particular PVS rules or strategies. For example, to appeal to a de�nition, use
EXPAND; to \suppose" the hypotheses of an implication being proved, use FLATTEN; to say \let � � �"
or \choose � � �", use SKOLEM; to apply a quanti�ed formula or to establish one by providing an instance,

hh

Step 1. What one wants to prove is the following formula—call it (*):

∀Inv : states → bool.
(∀s : states. start (s) ⇒ Inv (s) ∧
∀s : states , a : actions : (reachable (s) ∧ Inv (s) ∧ enabled (a , s)

⇒ Inv (trans (a , s))))
⇒ ∀s : states. reachable (s) ⇒ Inv (s)

Step 2. Let Inv 1 be a particular state invariant. We will show that the body of (*) holds for
Inv 1.

Step 3. So, suppose that

(α) ∀s : states. start (s) ⇒ Inv 1(s)
and

(β) ∀s : states , a : actions : (reachable (s) ∧ Inv 1(s) ∧ enabled (a , s)
⇒ Inv 1(trans (a , s))).

Step 4. Then, let s 1 be a particular state. We will show that reachable (s 1) ⇒ Inv 1(s 1).

Step 5. Thus, suppose reachable (s 1).

Step 6. Now, reachable (s 1) means that s 1 can be reached from a start state in n steps, for
some n ≥ 0.

Step 7. We will use induction on n.

Step 7.1. If n = 0, then start (s 1). In this case, by (α), Inv 1(s 1) holds.

Step 7.2. If n > 0, then s 1 = trans (a 0, s 0) for some state s 0 reachable in n −1 steps from
a start state and some action a 0 for which enabled (a 0, s 0) is true. By induc-
tive hypothesis, Inv 1(s 0) holds. By (β) applied to a 0 and s 0,
Inv 1(trans (a 0, s 0)) holds; i.e., Inv 1(s 1) holds.

QED.
hh

Figure 7: Hand Proof of the Induction Principle.

10

hh
(""

Step 1. (EXPAND "inductthm")

Step 2. (SKOLEM 1 "Inv_1")

Step 3. (FLATTEN)

Step 4. (SKOLEM 1 "s_1")

Step 5. (FLATTEN)

Step 6. (EXPAND "reachable")

Show induction result (CASE "(FORALL(n):
is sufficient. (FORALL(s): (reachable_hidden(s,n) => Inv_1(s))))")

(("1"
Let n_0 be such that (DELETE −2 −3)
reachable_hidden(s_1,n_0). (SKOLEM −2 "n_0")

Induction result applied (INST −1 "n_0")
to s_1 and n_0 (INST −1 "s_1")
finishes the proof. (GROUND))

("2"
Step 7. (INDUCT "n")

Begin Step 7.1. (("1"
(DELETE −2 −3 2)

If n = 0 then start(s_1). (EXPAND "reachable_hidden")

By (α), (EXPAND "base")
Inv_1(s_1) holds. (PROPAX))

Begin Step 7.2. ("2"

(DELETE −1 −3 2)
Let j_1 ≥ 0. (SKOLEM 1 "j_1")
Suppose ind. hyp. for j_1. (FLATTEN)

Choose s_01, and (SKOLEM 1 "s_01")
suppose reachable in j_1+1 steps. (FLATTEN)

Then s_01 is reached from s via a (EXPAND "reachable_hidden" −2)
for some s reachable in j_1 steps. (SIMPLIFY)
Let a = a_0 and s = s_0. (SKOLEM −2 ("a_0" "s_0"))

By inductive hypothesis, (INST −1 "s_0")
Inv_1(s_0) holds. (GROUND)

By (β) (EXPAND "inductstep")
applied to a_0 and s_0, (INST −5 "s_0" "a_0")
Inv_1(trans(a_0,s_0)) holds, (GROUND)

because s_0 is reachable (EXPAND "reachable")
in j_1 steps. (INST 1 "j_1"))))))hh

Figure 8: PVS Proof of the Induction Principle.

use INST; to do straightforward simpli�cation and propositional reasoning, use GROUND; and to set up
an induction, use INDUCT. Together with a few uses of DELETE to simplify the current proof goal and
one use of SIMPLIFY to simplify an assertion, the set of translations above is su�cient to handle nearly
everything in our hand proof.8

The correspondence between the steps in the hand proof and the PVS steps is more easily understood
from the actual user interaction with PVS. Figure 9 shows the contents of the PVS proof bu�er during the
�rst few steps of the proof in Figure 8. The current goal at each step is represented as a sequent, with a line
dividing a list of hypotheses from a list of conclusions. At each step, the object is to show that at least one

8The PROPAX in FIgure 8 is generated by PVS, and is not supplied by the user.

11

hh
machine_induct :

|-------
{1} (FORALL Inv: inductthm(Inv))

Rule? (EXPAND "inductthm")
Expanding the definition of inductthm, this simplifies to:
machine_induct :

|-------
{1} (FORALL Inv: base(Inv) & inductstep(Inv) => (FORALL (s: states): reachable(s) => Inv(s)))

Rule? (SKOLEM 1 "Inv_1")
For the top quantifier in 1, we introduce Skolem constants: Inv_1, this simplifies to:
machine_induct :

|-------
{1} base(Inv_1) & inductstep(Inv_1) => (FORALL (s: states): reachable(s) => Inv_1(s))

Rule? (FLATTEN)
Applying disjunctive simplification to flatten sequent, this simplifies to:
machine_induct :

{−1} base(Inv_1)
{−2} inductstep(Inv_1)
|-------

{1} (FORALL (s: states): reachable(s) => Inv_1(s))

Rule? (SKOLEM 1 "s_1")
For the top quantifier in 1, we introduce Skolem constants: s_1, this simplifies to:
machine_induct :

[−1] base(Inv_1)
[−2] inductstep(Inv_1)
|-------

{1} reachable(s_1) => Inv_1(s_1)

Rule? (FLATTEN)
Applying disjunctive simplification to flatten sequent, this simplifies to:
machine_induct :

[−1] base(Inv_1)
[−2] inductstep(Inv_1)
{−3} reachable(s_1)
|-------

{1} Inv_1(s_1)

Rule? (EXPAND "reachable")
Expanding the definition of reachable, this simplifies to:
machine_induct :

[−1] base(Inv_1)
[−2] inductstep(Inv_1)
{−3} (EXISTS (n: nat): reachable_hidden(s_1, n))
|-------

[1] Inv_1(s_1)
hh

Figure 9: Contents of the PVS Proof Bu�er.

of the conclusions follows from the hypotheses. The sequents in Figure 9 all have only one conclusion.
The parts of the hand proof in Figure 7 that require the help of a knowledgeable human when translating

to the PVS proof in Figure 8 are those associated with induction: �rst, the speci�cation of exactly what
to prove by induction; second, establishing that this inductive assertion is enough to obtain the proof; and
�nally, replacement of the state s 1 in the induction step Step 7.2 by an arbitrary state reachable in the
same number of steps.

To fully understand the correspondence between the proofs in Figures 7 and 8, one needs to run PVS.
For example, although the speci�cation of machine makes clear that \inductstep" corresponds to hypothesis
(�), to apply (�) to a 0 and s 0, one needs to know that its assertion number is �5. The ability to tag
assertions or identify them by content would reduce this problem.

In contrast to our detailed PVS proof, we show in Figure 10 a more conventional PVS proof of the

12

hh
(""
(GRIND :IF-MATCH NIL)
(CASE "(FORALL (n): (FORALL (s): (reachable_hidden(s,n) IMPLIES Inv!1(s))))")
(("1" (GRIND))
("2"
(INDUCT "n")
(("1" (GRIND))
("2"
(GRIND :IF-MATCH NIL)
(APPLY (THEN (INST −8 "s1!1" "a!1") (INST −2 "s1!1"))

"At this point, it is evident that we have the inductive hypothesis for n = j!1 and the
hypothesis (beta) to work with, and need to establish Inv!1(perform(a!1,s1!1)).
So, we instantiate the latter with s1!1 and a!1, and the former with s1!1.")

(GRIND))))))
hh

Figure 10: PVS Proof Using GRIND.

induction principle which relies heavily on the workhorse strategy GRIND.9 In this proof, one must also
supply the inductive assertion. In addition, one must determine when to tell GRIND not to reduce quanti�ed
formulae (the e�ect of the \:IF-MATCH NIL" argument), and help PVS decide how to use the inductive
hypothesis and assumption (�). One must also analyze the current goal after a call to GRIND terminates
to recognize what help is needed.

We refer to these two styles of PVS proofs as small step and large step proofs. One can view a hand
proof as a proof plan for a PVS proof. With a small step proof, one can more easily determine what point
has been reached in a proof plan and what step one wishes to take next. With a large step proof, especially
one using generic large steps based on GRIND, it is harder to control the position in the proof plan. In fact,
in some cases, this position may not be well de�ned, since GRIND may perform steps from the plan out of
order. With experience, a PVS user can often predict the result of a large step, but even so must rely on
interaction with PVS to see just what piece of information from the plan should be provided to PVS next.

In our experience, both styles of proof bene�t, in terms of speed of construction with minimal back-
tracking, from the existence of a proof plan. We note that if the automatic-instantiation feature of GRIND
had been somewhat more powerful, the only proof information PVS would have required in the large step
proof is the inductive assertion, and the reason why the resulting PVS proof worked would be impossible to
discern.10 The degree to which we �nd the resulting PVS proof convincing, in the sense that the theorem
is true for the right reasons, is certainly greater with the small step proof, although some of these reasons
were supplied to PVS in the large step proof.

On the other hand, for theorems with complex proofs, or for theorems with proofs having a standard
structure, mimicking all the micro-steps of the PVS proof is unnecessarily tedious and repetitive. In our
specialized domain, we have been able to de�ne reusable PVS strategies that allow the user to follow a proof
plan reasonably closely without most of the tedium of providing the micro-steps. Large step proofs using
GRIND typically execute several times as slowly as short step proofs. Because our strategies are specialized
for timed automata, they yield an e�ciency comparable to that of short step proofs.

5.2 Proof of the Safety Property

Our second example of a hand proof translated into a PVS proof is a proof with a standard structure:
namely, the proof by induction of a state invariant. The particular state invariant is the Safety Property for
the timed automaton SystImpl, which is stated and proved as Lemma 6.3 in [12, 13]. Figure 11 shows the
hand proof and the corresponding PVS proof.

The PVS proof uses the induction strategy AUTO PROOF UNIV SYSTIMPL to set up the induction,

9The GRIND strategy in PVS approximates an automatic theoremprover. It expands de�nitions and forms, applies rewrites,
invokes propositional and arithmetic decision procedures, and does automatic skolemization and instantiation. Instantiation is
done by best guess and can be incorrect. To provide more control of instantiation and other features, GRIND has options that
can be selected by supplying arguments.

10If one uses GRIND$ in place of GRIND, PVS will save the small steps that GRIND has followed. However, understanding
these steps is very di�cult.

13

hh
Lemma 6.3. In all reachable states of SystImpl, if Trains.r.status = I for any r, then Gate.status = down.

Proof: Use induction. The interesting cases are enterI and raise . Fix r .

1. enterI (r)

By the precondition, s.Trains.r.status =P .

If s.Gate.status ∈ {up,going –up }, then Lemma 6.1 implies that s.Trains.f irst (enterI (r)) >
now + γdown, so s.Trains.f irst (enterI (r)) > now . But, the precondition for enterI (r) is
s.Trains.f irst (enterI (r)) ≤ now . This means that it is impossible for this action to occur, a contradic-
tion.

If s.Gate.status = going −down , then Lemma 6.2 implies that s.Trains.f irst (enterI (r)) >
s.Gate.last (down). By Lemma B.1, s.Gate.status = going −down implies s.Gate.last (down) ≥ now .
This implies that s.Trains.f irst (enterI (r)) > now , which again means that it is impossible for this
action to occur.

The only remaining case is s.Gate.status = down. This implies s ′.Gate.status = down, which suffices.

2. raise

We need to show that the gate doesn’t get raised when a train is in I . So suppose that s.Trains.r.status
= I . The precondition of raise states that ∃/ r : s.CompImpl.r.sched −time ≤ now + γup + δ + γdown,
which implies that, for all r , s.CompImpl.r.sched −time > now . But Parts 1 and 3 of Lemma 5.1 imply
that in this case, s.Trains.r.status = P , a contradiction.

Inv_6_3_A(s: states):bool = (FORALL (r: train): status(r,s) = I => gate_status(s) = fully_down);

("" (APPLY (AUTO_PROOF_UNIV_SYSTIMPL "Inv_6_3_A") "Use induction. Fix r = r_2.")
(("1" (APPLY (THEN (EXPAND "enabled_specific") (SYSTIMPL_SIMP))

"Case enterI(r_1). Invoke the precondition.")
(CASE "gate_status(s_1) = fully_up OR gate_status(s_1) = going_up")

(("1" (APPLY (THEN (APPLY_UNIV_INV_LEMMA "6_1" "r_1") (SYSTIMPL_SIMP))
"Invoke the invariant lemma 6_1.")

(APPLY (TIME_ETC_SIMP) "Derive contradiction with the precondition."))
("2" (APPLY (THEN (APPLY_UNIV_INV_LEMMA "6_2" "r_1") (SYSTIMPL_SIMP))

"Invoke the invariant lemma 6_2.")
(APPLY (THEN (APPLY_INV_LEMMA "B_1_1") (SYSTIMPL_SIMP))
"Invoke invariant lemma B_1, part 1.")

(APPLY (TIME_ETC_SIMP) "Derive contradiction with the precondition."))))
("2" (APPLY (THEN (EXPAND "enabled_specific") (SYSTIMPL_SIMP) (INST 2 "r_2"))

"Case raise. Invoke and specialize the precondition.")
(APPLY (THEN (APPLY_UNIV_INV_LEMMA "5_1_1" "r_2") (SYSTIMPL_SIMP))
"Invoke invariant lemma 5_1, part 1.")

(APPLY (THEN (APPLY_UNIV_INV_LEMMA "5_1_3" "r_2") (SYSTIMPL_SIMP))
"Invoke invariant lemma 5_1, part 3.")

(APPLY (TIME_ETC_SIMP) "Derive contradiction."))
("3" (APPLY (THEN (EXPAND "enabled_specific") (SYSTIMPL_SIMP))

"Case up. Invoke the precondition."))))hh

Figure 11: Hand Proof and PVS Proof of the Safety Property.

potentially producing subgoals for the base case and each possible action. Subgoals deemed su�ciently
\trivial" are proved automatically, and only the nontrivial subgoals are displayed. As can be seen, in the
hand proof, the action cases for enterI(r) and raise are the nontrivial cases. The PVS proof of the enterI(r)
case is obtained as in the hand proof by invoking the precondition, doing a case split, applying the indicated
lemmas appropriately, and asking for a little simpli�cation and linear arithmetic. The PVS proof of the raise
case is translated analogously. An extra case up is generated in the PVS proof, but is handled by invoking
the precondition, a step considered obvious in the hand proof.

In our general experience with proofs of state invariants, we have noticed that an \extra" case waved
away as obvious in the hand proof occasionally turns up in the PVS proof. Appealing to one of a short list
of standard facts about timed automata typically proves these cases. In proving the Safety Property, the
standard fact needed is that the precondition must be satis�ed or the case will not arise. The precondition
is present among the hypotheses in name, but its de�nition must be expanded for it to be taken into
account. One other standard fact has sometimes been required in handling the \obvious" cases of the

14

hand proofs we have translated from [12]: the uniqueness of actions. In particular, if r 1 6= r 2, then
enterI(r 1) 6= enterI(r 2), and similarly for other actions with arguments. One can envision that certain
relationships among constants used to de�ne a timed automaton might also sometimes be considered too
obvious to mention. Adding knowledge of such standard facts to the induction strategies would eliminate
the need to deal with most such \obvious" cases interactively, but at the expense of longer proof times. It
would also obscure their application in the PVS proof in cases in which one wants to explicitly mention them
in the hand proof for emphasis.

A close look at the PVS proof of the Safety Property in Figure 11 reveals a few subtleties involving the
choice of a particular version of a strategy or its arguments.11

With respect to the choice of arguments, one notes �rst that when an invariant lemma is invoked, it is
sometimes applied to r1, and sometimes to r2. It would seem that the choice of appropriate argument would
have to be made by examining the current PVS goal. Although this could be done, the choice can be made
on another basis: choose r1 when one is clearly referring to the train index of the action case; choose r2 when
one is clearly referring to the train whose status is I (or, more generically, to the train mentioned explicitly
in the body of the lemma). Second, we note that the precondition of raise is \specialized" when it is invoked
in the raise branch of the proof. This is necessary because it contains a quanti�er. The instantiation to give
that quanti�er is r2, since the raise action is not indexed over trains. This instantiation can also be chosen
based on matching the body of the quanti�ed formula to the known fact that r2 is the train whose status
is I. Thus, these choices of argument can be made, if not automatically, at least from information provided
by the user of a more abstract nature than the argument's explicit name.

With respect to versions of strategies, one question that arises with respect to the PVS proof in Fig-
ure 11 is how one chooses the particular induction, simpli�cation, and lemma application strategies used.
The choice of AUTO PROOF UNIV SYSTIMPL and SYSTIMPL SIMP can be made by the PVS user on
knowing that one is proving a universally quanti�ed invariant in the theory SystImpl. Whether to use AP-
PLY UNIV INV LEMMA or APPLY INV LEMMA is determined by whether or not the invariant lemma is
universally quanti�ed. We note that while the user can make these choices of strategy, all of them could be
made automatically by an interface to PVS, given user input of the form \use induction" or \apply invariant
lemma 6 1".

Thus, in proving the Safety Property, it is possible to shield the veri�er from low-level interaction with
PVS. Our experience so far with other state invariant proofs indicates that this is very often the case.

A third category of translations of hand proofs to PVS proofs contains translations of proofs with a more
ad hoc proof structure than state invariant proofs. For more ad hoc proofs, our results so far suggest that
one cannot disengage the veri�er from low-level interaction with PVS to the extent that one can with the
more structured state invariant proofs. However, one can identify repeated patterns of reasoning that occur
because a result from a particular domain with much shared structure is being proved. Appropriate PVS
strategies can frequently handle these repeated patterns. A menu of such strategies, specially tailored for
timed automata models, can support translating hand proofs into PVS proofs made up of a combination of
a limited set of small PVS steps combined with large standard steps, whose correspondence with the source
hand proofs is much easier to see.

6 Summary of Results

Based on our experience to date, we discuss below our use of template speci�cations, how repeating patterns
in proofs were detected and exploited, how best to interact with the theorem prover, and how real-time
properties are expressed and proven in our approach.

6.1 Using Template Speci�cations

Using a template to create a formal speci�cation of a particular mathematical model greatly reduces the
required e�ort. This reduction comes from two sources. First, with the basic theories and lemmas already
speci�ed, the amount that remains to be speci�ed for a particular model is signi�cantly reduced. Second,
the existence of conventions regarding names, types, and de�nitions of the missing parts eliminates many

11The PVS proof commands are embedded in APPLY so that they can be accompanied by comments.

15

organizational decisions required in specifying a particular model: the speci�er needs only to �ll in the
missing pieces.

Creating a template helped us to identify commonalities among instances of the timed automata model
that can be exploited in designing specialized support for proving properties. The very discipline of creating a
template helps one to identify high level common patterns. For example, in our study, we identi�ed induction
structured over actions as an important principle that underlies many proofs about timed automata models.
This principle can be used to prove state invariants about these models by invoking appropriately designed
PVS strategies. At a more detailed level, the particular speci�cation structure and conventions enforced in
a template can be taken advantage of in creating reusable proof strategies: for example, in our template,
we know that we always want to expand the de�nition \start" of the start state in doing the base case of
an induction proof. This advantage can be taken even farther by exploiting even lower level features of the
template such as de�nition structure. More detail on the relation between our template and the strategies
we have developed can be found in Appendix C.

Templates can be enforced in di�erent ways, with tradeo�s involved. Through an additional, top-level
parameterized theory added to the framework in Section 4, we can require that all models include a time
passage action, de�ne the types of enabled-speci�c and trans, de�ne the signi�cance of these three operators
in relation to the admissible timed executions of a timed automaton, and enforce other similar template
conventions. This approach has the advantage of permitting many generic lemmas that provide important
support for proof strategies specialized for timed automata to be proved without instantiating the template.
These generic lemmas can then be kept in a standard library, saving much of the processing time needed to
load instantiations of the template into PVS. An alternative is to enforce the template conventions through
an interface that compiles user-provided information into a PVS speci�cation of the proper form. Our
experiments with template instantiations suggest that proofs of properties run more e�ciently when the
second approach is used.

However, no matter how the template is enforced, the strong type system in PVS is very helpful in
establishing a template discipline. In contrast to Lamport [20], we �nd strong typing more a help than a
hindrance.

6.2 Repeated Patterns in Timed Automaton Proofs

In analyzing proofs in the timed automata domain, our approach has been to create small step proofs,
optimize them for both e�ciency and logical structure, and �nd patterns that can be translated into PVS
strategies. We have found a variety of patterns. These patterns can be classi�ed by whether it is possible
to translate them into an appropriate strategy, whether the strategy can be written in PVS as it stands
or requires enhancements to PVS, and whether the strategy requires instance-speci�c details to compile or
choose. The classi�cation of certain repeating patterns remains to be decided. For some patterns, we do not
yet have a PVS strategy but can supply a heuristic: an example is the recurring argument in hand proofs
that time cannot pass beyond a certain bound unless a certain type of event occurs. In following a hand
proof, the need to turn to a heuristic can arise when the hand proof does not supply enough detail.

Many patterns that recur in small step proofs are of such a general nature that existing PVS strategies
already handle them. A simple example is the pattern handled by the PVS strategy SKOSIMP, which
corresponds to \Suppose that the hypotheses hold for some generic values; we will prove that the conclusion
holds for these values." However, there are some patterns of a general nature that require domain specialized
PVS strategies. An example is the repeated need to substitute names for values (as opposed to expressions|
that is, semantically as opposed to syntactically), and, conversely, to retrieve information associated with
names. Although this need in general will arise in nearly any domain, appropriate strategy support will
require such domain-speci�c information as when two expressions represent the same value, what kind of
information there exists to retrieve, and so on. We have made some progress in writing PVS strategies that
partially meet these needs; see Appendix C. Ideal strategy support will require certain enhancements to
PVS, such as the ability to recognize formulae by content.

Others patterns have appeared that are speci�c to timed automata. Examples are the repeated need to
apply state invariant lemmas and to establish that a state is reachable. In Appendix C, we present strategies
we have de�ned to help with each of these patterns. For applying state invariants, we have two strategies, one

16

for unquanti�ed invariants and another for universally quanti�ed invariants. The choice of which strategy
to invoke is assumed to be made externally to PVS. In principle, the choice could be made internally by
PVS if more access to the PVS data structures were provided. To show that a state in an admissible timed
execution is reachable, we have a strategy that applies a lemma containing general reachability results. The
user must supply instantiations that focus the general results on the neighborhood (in terms of the number
of non-time steps that have occurred) of the state that is to be con�rmed to be reachable. With appropriate
enhancements to PVS, the appropriate instantiations could be inferred automatically from the current proof
goal; also, after simpli�cation of the results from application of the lemma, the irrelevant results could be
deleted. This is a further example where a better PVS strategy is in principle feasible, but not yet expressible:
helpful enhancements to PVS would again include the ability to recognize formulae by content, and also the
ability to extract parts of formulae and to apply naming conventions to formulae.

There are other patterns speci�c to timed automata that require instantiation-speci�c knowledge before
an appropriate PVS strategy can be constructed. An important example is in the setting up cases in an
induction proof. Each case of a particular form is handled in a particular way. The information that must
be supplied includes whether the case is the base case or an action case; if an action case, how the action
is parameterized; and if an action case, whether the body of the corresponding case in the de�nition of
trans is an IF THEN ELSE. All of the supplied information can be determined automatically from the
instantiated template speci�cation. Thus, it is possible, in principle, to compile such strategies from a
template instantiation. It is conceivable that the necessary choices could be made by a single PVS strategy
that accesses details of de�nitions; such a strategy would require access to the PVS data structures that
currently has not been provided. There is clearly an e�ciency tradeo� involved in the choice of solution; a
strategy which itself must make choices will obviously be less e�cient. Whether the reduction in e�ciency
is signi�cant remains to be determined.

In proving state invariants, another interesting pattern arises. In particular, when the state invariant
involves quanti�cation, one often wishes to coordinate the simpli�cation of the quanti�ed formulae from the
inductive hypothesis and conclusion (speci�cally, one wants to instantiate one with the skolem constant or
constants from the other). This is typically the case when one is reasoning about the behavior of independent
entities, such as the trains in the GRC benchmark. When this is the case, the standard part of the induction
strategy can be extended to include this; this was in fact done in our proof of the Safety Property. The
fact that a PVS strategy could be developed to do the coordination of skolemization and instantiation
depended heavily on the predictability of the assertion numbers of the related quanti�ed formulae. For
invariants involving quanti�cation in other forms, such as existential or imbedded, it is harder to predict the
related assertion numbers. In principle, it should be possible to extend the standard induction strategy to
handle any particular additional coordination case analogously, and also to select the appropriate variant
of the induction strategy to apply automatically from knowledge of the form of the invariant to be proved.
Implementing such extensions would require enhancements to PVS.

Some repeating patterns that occur in proofs are of such a general nature that the best one can o�er as
a general solution is a heuristic. For these cases, one can hope to provide automated support that guides
the user in applying the heuristic.

6.3 Repeated Patterns in Using PVS

As indicated above, our approach to PVS proofs about timed automata is to follow a hand proof as closely
as possible. For nontrivial theorems, a hand proof provides essential guidance in constructing the automated
proof, since it presents, in some organized fashion, the reasons why a theorem is believed to be true. These
reasons generally correspond closely to the information that must be supplied to a theorem prover.

As illustrated in Section 5, very detailed proofs and routine proofs can be easily translated into PVS. A
direct translation of a detailed hand proof to a PVS proof involves detailed human guidance, but most of
this guidance is routine and could conceivably be mechanized. Undertaking such a direct translation helps
to clarify at which points in the proof crucial information that involves some human insight must be supplied
to the prover: e.g., in our example proof of the induction principle, this crucial information involved the
exact formulation and use of what needs to be proved using induction over natural numbers. In translating
a hand proof with a routine structure (e.g., an induction proof of a state invariant of an automaton with

17

a standard structure), human guidance is mostly needed to provide the non-routine facts and case splits
needed to complete proof branches generated by a strategy that performs the standard initial stages of the
proof. The need for human guidance can be further minimized in this case by taking advantage of template
conventions to provide domain-speci�c strategies for recurring types of reasoning. For example, in proving
the Safety Property in section 5, the strategy TIME ETC SIMP handles reasoning about extended time
values.

Translating hand proofs that omit many details and have an ad hoc structure to PVS requires signif-
icant interactive guidance. However, this problem can be reduced by using domain-speci�c strategies and
heuristics. The domain-speci�c strategies permit one to take larger steps in a proof and make it easier to
track one's place in the hand proof. An example that has arisen in ad hoc proofs about timed automata
is the need to con�rm with minimum e�ort that a certain state is reachable, because one wants to apply
a state invariant lemma to it. We have designed a strategy that simpli�es this step greatly, and would be
able to improve it further if certain enhancements are made to PVS. The specialized strategies that we have
developed so far for ad hoc proofs have not reduced proof e�ciency. A preliminary exercise in developing
domain-speci�c strategies for timed automata and employing them in an ad hoc proof resulted in a more
than 60% reduction in proof size (415 lines to 158 lines) with no penalty|in fact, a slight improvement|in
the running time of the proof.

To keep track of the correspondence between a hand proof and a PVS proof, inserting comments in the
PVS proof is very helpful, and for a proof of any length, it is essential. A combination of comments in
the proof and a glossary of English meanings of PVS strategies can create con�dence that the PVS proof
succeeded for the right reasons.

We have undertaken the translation into PVS of several hand proofs of properties of timed automata of
an ad hoc structure, the longest being the one page hand proof of a result equivalent to the Utility Property
in Section 2 for the timed automaton OpSpec. From this experience, we can make additional observations
on the process of translating hand proofs into PVS.

The �rst observation is that although PVS has many built-in rules and strategies that allow one to closely
mimic the steps of a detailed hand proof, there are some cases in which one cannot quite do this with PVS
as it stands. This is not only due to the fact that one must sometimes take many steps in PVS to follow
a step in the hand proof|a phenomenon that will become less of a problem as more specialized strategies
are developed|but results from PVS sometimes forcing a slightly di�erent structure on the proof by way of
undesired case splits.

In general, case splits should be avoided unless they are natural occurrences in a human style proof, since
when they are forced, the existing proof plan will need to be revised. A major example where one is forced
in PVS to split a goal into separate subgoals, where conceptually this is not necessary, is as follows. When
one has facts A and A) B in the antecedent of the goal, a call to the PVS strategy ASSERT will, in most
cases, reduce the second fact to simply B, provided the form of A is simple. For the case when A is more
complex, a user-de�ned PVS strategy can be written that will, in most cases, accomplish the same thing.
An exception in both cases is when the form of B is B1) B2. In this case, one is forced into a case split.
The di�culty is that some of the PVS rules and strategies are not exactly on target with the natural steps
in a hand proof. Adding rules to PVS that provide �ner control of subgoal manipulation should overcome
this di�culty.

Even when case splits are part of the proof plan, they can cause the problem of losing track of one's place
in a proof when using PVS. Planned case splits may be explicit in the hand proof, or implicit as the result
of including an in-line lemma in the proof|that is, a lemma proved on the spot and then applied. After
doing several case splits in a row and then discharging subgoals in the default order, upon returning to the
subgoal or subgoals that correspond to the second or additional branches from the �rst case split, one can
easily forget where they came from, and therefore, what one's approach to their proof will be. The ability to
attach comments to related subgoals at least semi-automatically, based on user input, would greatly alleviate
this problem.

The second observation is that a very common occurrence in the process of creating a machine-checked
proof is the reappearance of subgoals that have already been proved in an earlier proof branch. In the hand
proof, one can simply say \as shown earlier ..." but this will not work in PVS or most other automatic
theorem proving systems. However, one of the advantages to starting from a hand proof is the ability to see

18

easily where some piece of information is used more than once in the proof. A careful restructuring of the
hand proof prior to undertaking the PVS proof can eliminate much subgoal duplication in the PVS proof,
particularly of subgoals corresponding to facts playing a major role in the proof. Our experience has shown
that eliminating all duplication of subgoals is di�cult and perhaps impossible, since some subgoals come from
type correctness conditions implicitly needed for the application of lemmas in the course of the proof. And
even though some repeated subgoals can be eliminated by restructuring the proof plan, there will be some
proofs where this can make the reasoning in the proof more di�cult to follow, since such restructuring usually
involves the up front introduction of facts that will be used more than once whose role in the proof is not
yet clear. Introducing these facts as separately proved lemmas is one possible solution, but not always ideal;
assuming that one is checking hand proofs using PVS, one must ask why these facts were not introduced
as separate lemmas in the hand proof. The answer is typically that they are too specialized to be worth
including in a theory, being unlikely to be used outside the current proof. Thus, some mechanism in PVS
for handling repeating subgoals would be a very welcome enhancement.

6.4 Expressing and Proving Real-Time Properties

In our approach, the real-time properties of a timed automaton are determined by the de�nitions of enabled
and trans. Real-time properties that are state invariants are proved in PVS by induction. The speci�c stage
at which reasoning about time occurs in each branch of the induction is typically a point at which a set of
inequalities involving time values has been established by invoking the de�nitions of enabled and trans and
by introducing previous state invariant lemmas. The proof is then completed using only reasoning about the
inequalities. If time were simply represented by the non-negative real numbers, the decision procedures in
PVS that do arithmetic would complete the proof in a single step. Because we include in�nity in the set of
possible time values, these decision procedures will not work directly. To handle this problem, we developed
a strategy called TIME ETC SIMP that reduces time inequalities to inequalities involving non-negative real
numbers and then invokes the PVS decision procedures for arithmetic.

Care must be taken in translating assertions involving time values from hand proofs into PVS. While
\negative" time values can be used in hand proofs, they cannot be used in our PVS proofs, because our
type time does not contain values corresponding to negative numbers. To handle this problem, we transform
any equations or inequalities involving subtraction of time values so that they involve only addition, prior
to doing PVS proofs.

Other real-time properties of a timed automaton concern the relative timing of events during an admissible
timed execution. Proofs of these properties often involve establishing the claim that if the automaton is in
a certain state, then time cannot pass beyond a certain time bound unless a speci�ed event occurs prior to
the bound. As indicated above, we lack a speci�c strategy for this type of reasoning. However, we do have
a heuristic that often works. With this heuristic, we prove by induction that if the required event does not
occur between the current time now(s) and the time bound, then some component of the state involved in
the precondition for time passage is not changed by subsequent events, and that, as a result, the precondition
prevents a time passage event from crossing the bound. It is likely that a PVS strategy with a su�cient set
of arguments can be developed to set up a proof based on this heuristic. We also envision an interactive
interface that guides the user through an application of the strategy or of the heuristic directly.

7 Related Work

An e�ort closely related to ours uses the Larch Shared Language and the Larch Prover (LP) to prove state
invariants and simulations for real time systems represented as timed automata [22]. In this approach, proofs
are developed in LP that follow hand proofs, but proof strategies specialized to timed automata that can
support a close correspondence in the more complex induction or simulation proofs and proofs of an ad hoc
structure are not included. Whether such proof strategies can be developed in LP to the same extent as in
PVS is an open question. Other e�orts have used PVS in proving properties of real-time systems expressed in
di�erent formalisms. For example, a proof assistant that encodes the Duration Calculus in PVS and supports
the development of Duration Calculus speci�cations and proofs of real-time properties is described in [34].
A second e�ort whose goal is to make formal speci�cation and theorem proving in PVS more accessible to
hardware design practitioners is described in [35].

19

8 Conclusions

A major goal of our research is to make the use of an automatic theorem prover feasible for software
developers. Checking properties of speci�cations of real-time systems with a mechanical theorem prover
can lead to the early discovery of inconsistencies and omissions in a design. We envision that such use
of automatic provers can be made feasible by appropriate automated support. Parts of this support may
be direct, e.g., through an appropriate interface to a system such as PVS that supports speci�cation and
automatic theorem proving. Other parts of it may be indirect, e.g., by way of a mechanism for arriving at
formal speci�cations that are understandable to both the developer and a formal methods expert, and for
creating mechanically checked proofs that also are understandable to both.

Our early results are encouraging. For real-time systems speci�ed in the timed automata model, we have
developed a template that can be instantiated in a straightforward manner. For understandable translations
of hand proofs, we have identi�ed PVS proof steps that correspond to natural steps in hand proofs. We
have been able to de�ne specialized strategies in PVS that make the translation of hand proofs of state
invariants into recognizably similar PVS proofs straightforward and also simple enough in many cases that
developers themselves could create them through an appropriate interface to PVS. Such an interface would
perform such services as choosing the appropriate instance of the induction strategy or the invariant lemma
strategy and would also be useful to the formal methods expert in simplifying the proof e�ort. We have
de�ned additional model-speci�c strategies that can be useful to the formal methods expert in translating
more complex proofs of properties of designs into recognizable PVS equivalents.

Although PVS strategies such as GRIND reduce the necessary human interaction with the theorem prover
in obtaining a proof, the reasoning in proofs obtained from these strategies is hard to follow. In contrast, we
have found that human-understandable PVS proofs can be derived naturally and with an acceptable level
of human interaction by applying a set of domain-speci�c strategies in the course of following a hand proof.
Being specialized, these strategies result in proofs with a signi�cantly shorter execution time than proofs
based on GRIND. There is also an advantage in undertaking proofs using our methods and strategies when
the proof does not succeed: it is much simpler to discover the reason that the proof does not succeed when
one knows exactly the corresponding step in the hand proof.

Similar observations apply when we compare our methods to other automata-based formal approaches
to reasoning about real-time systems. In particular, while the latter can be used to prove properties, they
provide no feedback on why the properties are true. When a proof fails, a tool such as SMV can supply
the trace of a counterexample. While this information is helpful, it is on the same low level as that used in
software debugging. By contrast, the information provided by the failure of a mechanically checked hand
proof is on a conceptual level, thus providing more direct information on where one's assumptions about
a particular automaton speci�cation are incorrect. Mechanically checked hand proofs have an additional
advantage: they make it easier to predict the e�ects of changes in speci�cations on the properties of the
speci�ed automata. In addition, when these changes do not a�ect the validity of a property, checking the
property can often be done by modifying the former proof only slightly, or not at all|as opposed to rerunning
a time-consuming algorithm on the entire speci�cation.

Our use of PVS as a basis for speci�cation and proof support has been largely successful. Using decision
procedures to handle the obvious low-level reasoning greatly facilitates the creation of the proofs. Moreover,
the rich speci�cation language of PVS supports both parameterized theories and higher-order constructs
that allow functions and predicates to be used as record components and theory parameters. As a result,
once one has identi�ed common features to include in a template, expressing the template in PVS is largely
straightforward and natural. The higher-order logic of PVS makes it possible to prove useful, reusable high
level theorems about arbitrary predicates and functions, such as our induction principle.

However, the current version of PVS does not always satisfy our needs. For example, it imposes some
constraints that limit the directness with which one can express timed automaton speci�cations and trans-
late steps from hand proofs. At least one case has arisen where it would be helpful to have parametric
polymorphism in the type system, as is the case in HOL.

The limitation on speci�cations is visible in the template instantiation of the timed automaton Trains;
the status component of a state of Trains is represented by the basic component of the state of the PVS
instantiation trains, rather than by a component named status. An auxiliary function de�nition is included
in the PVS version to permit this basic component to be referred to using the name status. The natural

20

method of providing a template for the type state with slots for the standard parts involving time and timing
is to de�ne type state as a record type with standard components. In addition to the standard components,
the state of any particular timed automaton may have an arbitrary number of specialized state components.
Being unable to de�ne a parameterized record type in PVS with a variable number of components, we are
constrained to use a single slot, to which we give the standard name basic, to represent these additional
specialized components.

In translating steps from hand proofs to PVS, there are cases in which one must choose the appropriate
version of a PVS strategy|say, to invoke a state invariant lemma|for the current context. While this
sometimes might be done using a single, parameterized strategy, we wish to relieve the user of providing
(the often considerable and technical) information that has the potential to be supplied automatically. Both
of these problems could be eliminated from the user's point of view by an appropriate interface to PVS.
However, there are other limitations of PVS as it stands as support for translating hand proofs that adding
an interface cannot eliminate, such as the need to refer to particular assertion numbers when applying proof
rules (see Section 5.2). One outcome of our study is the identi�cation of a number of features, such as
the ability to name assertions or identify them by contents, that would remove most or all of these other
limitations if added to PVS.

An example di�culty that a�ects both speci�cation and proof is the problem of reasoning about extended
non-negative time. In both mathematical speci�cation and hand proof, one can allow a larger time value to
be subtracted from a smaller one with a negative number as the result. Because we have had to de�ne type
time as an abstract data type in PVS, time values cannot easily be viewed as overlapping real number values
and therefore sharing some arithmetic. In fact, the result of subtracting a larger time value from a smaller
one is unde�ned.12 To accomplish speci�cations and proofs equivalent to the originals in [12], we have had
to rephrase any equalities involving subtraction as equalities involving only addition. (See the de�nitions
related to the Utility Property in Appendix B.3.)

The lack of parametric polymorphism in the type system of PVS has led to the followingminor frustration:
in timed automata, it is known that the time transition action changes only the now component of a state.
Thus, other state components are equal for the states at the endpoints of a time transition interval. One
cannot state a general lemma to this e�ect in PVS because these components do not all have the same
type. One must instead prove a separate invariance lemma for each individual state component. With
a standardized naming structure for these lemmas, the fact that they are separate can be masked on the
strategy level by designing the strategy to invoke the appropriate lemma when passed the name of a state
component as an argument.

9 TAME: Recent Developments

Since the publication of [1], our system for supporting the methods developed in this study was given the
name TAME [2]. Further developments regarding TAME have been reported in [5], [4], and [6]. TAME has
now been applied with some success to multiple examples of timed and non-timed automata, including the
boiler controller in [21] (see [5, 3]), a vehicle control system from [36], a timed version of Fischer's algorithm
from [23], the group communication service in [10, 9], and several examples of SCR speci�cations (see [6]).13

For the boiler controller and vehicle control system, TAME was extended by expanding the template
conventions to cover specifying nondeterministic transitions using Hilbert's \choice" operator �, extending
the set of common theories to include a theory real thy containing facts about real numbers helpful in
reasoning about real arithmetic, and adding a new strategy to the standard strategies to simplify reasoning
about �. A slightly modi�ed version of TAME's template and strategies was developed for reasoning about
SCR speci�cations: for this purpose, it has proved more useful to represent transitions using a relation
rather than a function. Although TAME was developed for timed automata, it can also be used without
modi�cation for non-timed automata, the group communication service being an example. TAME was used
in a somewhat di�erent fashion in connection with this example: many of the proofs of state invariants were
undertaken with no hand proof to follow, or at best an extremely sketchy hand proof. While this resulted in

12We could have simply permitted negative time values; however, doing so would have complicated several of our de�nitions,

and, therefore, proofs involving reasoning about time. For example, we would have had to explictly state that the value of now
for any state is nonnegative.

13For more on SCR speci�cations, see [15, 17].

21

hhh

Inv_6_3_A(s: states):bool = (FORALL (r: train): status(r,s) = I => gate_status(s) = fully_down);

(""
(AUTO_INDUCT)
(("1" ;;Case enterI(Itrainof_action)

(APPLY_SPECIFIC_PRECOND)
(SUPPOSE "gate_status(prestate)=fully_up OR gate_status(prestate)=going_up")
(("1" ;;Suppose [gate_status(prestate)=fully_up OR gate_status(prestate)=going_up]

(APPLY_INV_LEMMA "6_1" "Itrainof_action")
(TRY_SIMP))

("2" ;;Suppose not [gate_status(prestate)=fully_up OR gate_status(prestate)=going_up]
(APPLY_INV_LEMMA "6_2" "Itrainof_action")
(APPLY_INV_LEMMA "B_1_1")
(TRY_SIMP))))

("2" ;;Case raise
(APPLY_SPECIFIC_PRECOND)
(INST "specific-precondition" "r_theorem")
(APPLY_INV_LEMMA "5_1_1" "r_theorem")
(APPLY_INV_LEMMA "5_1_3" "r_theorem")
(TRY_SIMP))

("3" ;;Case up
(APPLY_SPECIFIC_PRECOND)
(TRY_SIMP))))hhh

Figure 12: Updated TAME Proof of the Safety Property

some extra backtracking in the search for a mechanical proof, many of the proofs of simple properties were
obtained fairly quickly. Feedback from proofs that did not succeed was provided to the authors of [10, 9], and
proved helpful in suggesting additional state invariants needed as lemmas, for indicating that the statements
of proposed invariants needed revision, of for suggesting the additional guidance needed in mechanizing the
proof. For one complex property that was accompanied by a detailed hand proof, TAME helped to reveal
an important missing case not covered by that proof. It should be noted that many extra theories for the
specialized data types used in the speci�cation of the group communication service, and corresponding proof
strategies for reasoning about these types, were used to support the application of TAME in this context. In
fact, completing the checking of all the invariant lemmas in [10, 9] awaits fuller development of these special
data type theories. Therefore, while TAME has proved very useful for this application, the use of TAME for
this and similar examples entails more than the usual overhead. However, this overhead and more would be
needed in any ad hoc approach to mechanizing proofs of properties of speci�cations that use complex data
types.

Based on a preliminary version of PVS with some added features|the ability to generate automatic labels
for formulae in a sequent, the ability to generate automatic comments that are displayed both interactively
and in saved proofs, the ability to probe into the content of formulae, and a few more atomic proof steps|we
have solved some of the problems noted in Sections 6.3 and 8. In particular, comments labeling the base case
and induction cases of a state invariant induction proof are now generated automatically, as are comments
showing the content of various facts applied in the proof such as preconditions, previous invariant lemmas,
or suppositions. Strategies that help the user avoid unnecessary branching in mechanized proofs have been
or are being developed. Uniform strategies for the induction step and the application of invariant lemmas
now exist, and with the added PVS features plus some documentation of PVS internals, were implemented
internally to PVS, without an external interface. This work is discussed in [6]. As an example of how TAME
proofs of state invariants now typically appear using the improved TAME strategies, Figure 12 shows the
most recent version of the PVS proof of the Safety Property in Figure 11.14 It should now be possible to
extend TAME with the strategies proposed in Appendix E and other proof steps useful in ad hoc proofs.

Future plans for TAME include developing user interface support outside of PVS. An external interface
would include support for entering the application-speci�c parts of speci�cations into the TAME template,
and support for automatic translation of automata speci�cations in other speci�cation languages into TAME

14For clarity, comments generated by APPLY SPECIFIC PRECOND and APPLY INV LEMMA have been omitted.

22

form. (There is a preliminary implementation of the latter for SCR speci�cations.) The interface would also
handle some processing of a speci�cation externally to PVS|for example, the construction of application-
speci�c strategies such as SYSTIMPL SIMP. In addition, we expect the interface to provide help to the
user in the form of simple access to lemmas from all relevant theories and descriptions of existing TAME
strategies.

So far, no proof support has been developed for proofs of simulation of one automaton by another.
While it is possible to provide a template with slots for two automata for this purpose, accompanied by
appropriate proof strategies, a problem arises when one wishes to apply a lemma previously proved for one
of the automata in the course of a proof: this automaton has been speci�ed and reasoned about in a separate
theory. When theory instantiations become available in PVS as planned [32], support for simulation proofs
is feasible in a form we desire.

Acknowledgments

We wish to thank the anonymous reviewers of [1] for insightful comments and our colleagues Ramesh Bharad-
waj and Ralph Je�ords for very helpful discussions. We also wish to thank Natarajan Shankar and Sam
Owre of SRI International for implementing the extensions to PVS that allowed the further development of
TAME.

References

[1] M. Archer and C. Heitmeyer. Mechanical veri�cation of timed automata: A case study. In Proc. 1996 IEEE

Real-Time Technology and Applications Symp. (RTAS'96). IEEE Computer Society Press, 1996.

[2] M. Archer and C. Heitmeyer. TAME: A specialized speci�cation and veri�cation system for timed automata.

In Work-In-Progress Proc. 1996 IEEE Real-Time Systems Symp. (RTSS'96), pages 3{6, 1996.

[3] M. Archer and C. Heitmeyer. Verifying hybrid systems modeled as timed automata: A case study. Technical

report, NRL, Wash., DC, 1997. In preparation.

[4] Myla Archer and Constance Heitmeyer. Human-style theorem proving using PVS. In E. L. Gunter and A. Felty,

editors, Theorem Proving in Higher Order Logics (TPHOLs'97), volume 1275 of Lect. Notes in Comp. Sci., pages

33{48. Springer-Verlag, 1997.

[5] Myla Archer and Constance Heitmeyer. Verifying hybrid systems modeled as timed automata: A case study. In
Hybrid and Real-Time Systems (HART'97), volume 1201 of Lect. Notes in Comp. Sci., pages 171{185. Springer-

Verlag, 1997.

[6] Myla Archer, Constance Heitmeyer, and Steve Sims. TAME: A PVS interface to simplify proofs for automata

models. Submitted for publication.

[7] R. Boyer and J Moore. A Computational Logic. Academic Press, 1979.

[8] S. Campos, E. Clarke, and M. Minea. Analysis of real-time systems using symbolic techniques. In Formal

Methods for Real-Time Computing, chapter 9. John Wiley & Sons, 1996.

[9] A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a partitionable group communication service.
Technical Memo MIT/LCS/TM-570, Lab. for Comp. Sci., Mass. Inst. of Tech., October, 1997.

[10] A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a partitionable group communication service.

In Proc. Sixteenth Ann. ACM Symp. on Principles of Distributed Computing (PODC'97), pages 53{62, Santa

Barbara, CA, August 1997.

[11] M. J. C. Gordon and T.F. Melham, editors. Introduction to HOL: A Theorem Proving Environment for Higher-

Order Logic. Cambridge University Press, 1993.

[12] C. Heitmeyer and N. Lynch. The Generalized Railroad Crossing: A case study in formal veri�cation of real-time

systems. Technical Report MIT/LCS/TM-51, Lab. for Comp. Sci., MIT, Cambridge, MA, 1994. Also TR 7619,
NRL, Wash., DC 1994.

[13] C. Heitmeyer and N. Lynch. The Generalized Railroad Crossing: A case study in formal veri�cation of real-time
systems. In Proc., Real-Time Systems Symp., San Juan, Puerto Rico, December 1994.

[14] C. Heitmeyer and D. Mandrioli, editors. Formal Methods for Real-Time Computing. Number 5 in Trends in

Software. John Wiley & Sons, 1996.

23

[15] C. L. Heitmeyer, R. D. Je�ords, and B. G. Labaw. Automated consistency checking of requirements speci�cations.
ACM Transactions on Software Engineering and Methodology, 5(3):231{261, April{June 1996.

[16] C. L. Heitmeyer, R. D. Je�ords, and B. G. Labaw. A benchmark for comparing di�erent approaches for specifying

and verifying real-time systems. In Proc., 10th Intern. Workshop on Real-Time Operating Systems and Software,

May, 1993.

[17] Constance Heitmeyer, James Kirby, and Bruce Labaw. Tools for formal speci�cation, veri�cation, and validation

of requirements. In Proc. 12th Annual Conf. on Computer Assurance (COMPASS '97), Gaithersburg, MD, June
1997.

[18] T. Henzinger and P. Ho. Hytech: The Cornell Hybrid Technology Tool. Technical report, Cornell University,
1995.

[19] R. P. Kurshan. Computer-Aided Veri�cation of Coordinating Processes: the Automata-Theoretic Approach.
Princeton University Press, 1994.

[20] L. Lamport. Types are not harmless. Digital Systems Research Center, July 1995.

[21] Gunter Leeb and Nancy Lynch. Proving safety properties of the Steam Boiler Controller: Formal methods for
industrial applications: A case study. In Jean-Raymond Abrial, Egon Boerger, and Hans Langmaack, editors,

Formal Methods for Industrial Applications: Specifying and Programming the Steam Boiler Control, volume 1165

of Lect. Notes in Comp. Sci. Springer-Verlag, 1996.

[22] V. Luchangco, E. S�oylemez, S. Garland, and N. Lynch. Verifying timing properties of concurrent algorithms.

In D. Hogrefe and S. Leue, editors, Formal Description Techniques VII: Proc. of the 7th IFIP WG6.1 Intern.
Conference on Formal Description Techniques (FORTE'94, Berne, Switzerland, October 1994), pages 259{273.

Chapman and Hall, 1995.

[23] Victor Luchangco. Using simulation techniques to prove timing properties. Master's thesis, Massachusetts

Institute of Technology, June 1995.

[24] N. Lynch. Simulation techniques for proving properties of real-time systems. In REX Workshop '93, volume 803

of Lecture Notes in Computer Science, pages 375{424, Mook, the Netherlands, 1994. Springer-Verlag.

[25] N. Lynch and H. Attiya. Using mappings to prove timing properties. Distrib. Comput., 6:121{139, 1992.

[26] N. Lynch and M. Tuttle. An introduction to Input/Output automata. CWI-Quarterly, 2(3):219{246, September

1989. Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands.

[27] N. Lynch and F. Vaandrager. Forward and backward simulations { Part II: Timing-based systems. To appear

in Information and Computation.

[28] N. Lynch and F. Vaandrager. Forward and backward simulations for timing-based systems. In Proc. of REX

Workshop \Real-Time: Theory in Practice", volume 600 of Lecture Notes in Computer Science, pages 397{446.

Springer-Verlag, 1991.

[29] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[30] M. Merritt, F. Modugno, and M. R. Tuttle. Time constrained automata. In J. C. M. Baeten and J. F. Goote,

eds., CONCUR'91: 2nd Intern. Conference on Concurrency Theory, vol. 527 of Lect. Notes in Comp. Sci.
Springer-Verlag, 1991.

[31] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal veri�cation for fault-tolerant

architectures: Prolegomena to the design of PVS. IEEE Transactions on Software Engineering, 21(2):107{125,

February 1995.

[32] John Rushby. Private communication. NRL, Jan. 1997.

[33] N. Shankar, S. Owre, and J. Rushby. The PVS proof checker: A reference manual. Technical report, Computer
Science Lab., SRI Intl., Menlo Park, CA, 1993.

[34] J. Skakkebaek and N. Shankar. Towards a duration calculus proof assistant in PVS. In Third Intern. School

and Symp. on Formal Techniques in Real Time and Fault Tolerant Systems, Lect. Notes in Comp. Sci. 863.

Springer-Verlag, 1994.

[35] M. K. Srivas and S. P. Miller. Formal veri�cation of a commercial microprocessor. Technical Report SRI-CSL-

95-04, Computer Science Lab., SRI Intl., Menlo Park, CA, 1995.

[36] Henri B. Weinberg. Correctness of vehicle control systems: A case study. Master's thesis, Massachusetts Institute

of Technology, February 1996.

24

A Appendix. The Theory atexecs: Admissible Timed Executions

Below is the speci�cation of the (parameterized) theory atexecs that is one of the underlying theories of
our template speci�cation for timed automata. The major purpose of this speci�cation is the de�nition
of the type atexecs. This de�nition, which closely follows the description of admissible timed executions
in [12, 13], represents atexecs as a complex predicate subtype of a record type with three components:
an action sequence, a trajectory sequence, and a time sequence. The associated predicate restricts these
three-sequence combinations to those whose �rst trajectory starts with a start state, whose trajectory time
bounds connect up, whose trajectory end points are connected by the corresponding actions, and whose time
sequence satis�es a \greatest lower bound" property that ensures that it is non-Zeno: that is, as the index
of the time points approaches in�nity, so does the indexed time.

The de�nitions after that of atexecs set up two examples of lemmas about admissible timed executions,
last event and �rst event, that eventually will be used to support useful specialized strategies. For example,
the strategies using these lemmas will allow one in a single PVS step to follow hand proof steps of the form
\let � be the last (or �rst) event before (or after) state s that has property P".

We note that, as with the template de�nition of time passage events, this part of the template is also
more restrictive than the model described in Section 2.2. First, we enforce the condition that the value
of now in any admissible timed execution must approach in�nity by requiring the non-time-passage events
to be in�nite in number and to include a �rst one after any �xed �nite time. In the general model, an
admissible timed execution might have only �nitely many non-time-passage events, with time approaching
in�nity through successive time-passage events. This di�erence is not really signi�cant, since one can always
add a dummy do-nothing non-time-passage action at in�nitely many future points in a \�nite" admissible
timed execution. The second di�erence in the model is that we have added an axiom trajectory unique (see
the theory opspec atexecs aux in Appendix B.3) whose e�ect is to ensure that there are no repeating
states in an admissible timed execution. A later state that repeats an earlier state could result only from a
series of actions occuring in zero time; otherwise, the later state would have a di�erent time component. We
do not believe that ignoring executions with such \loops" is inordinately restrictive. In particular, an unsafe
state lasting zero time should be unimportant, and properties (such as the utility property for opspec)
involving time intervals should be una�ected in practice. If a real reason to permit repeating states arises,
we could add the concept of \state occurrence" on which to base some of our reasoning.

atexecs[states, actions: TYPE,
start: [states �> bool],
now: [states �> fr:real j r>=0g],
step?: [[states,actions,states] �> bool],
nu: [fr:real j r>0g �> actions]] : THEORY

BEGIN

future: TYPE = fr:real j r>=0g;

k,m,n1,n2: VAR nat;
z,t1,t2: VAR future;
a: VAR actions;

time action?(a):bool = (EXISTS (t:future): t > 0 & a = nu(t));

interval(t1,t2)(z):bool = (t1 <= z & z <= t2);

time path: TYPE = [# ftime,length:future, path:[(interval(ftime,ftime+length))�>states] #];

ltime(w:time path):future = ftime(w) + length(w);

trajectory?(w:time path): bool =
(FORALL (z1,z2: (interval(ftime(w),ltime(w)))):

z1<z2 => step?(path(w)(z1),nu(z2�z1),path(w)(z2)))
& (FORALL (z: (interval(ftime(w),ltime(w)))): now(path(w)(z)) = z);

trajectory: TYPE = (trajectory?);

25

fstate(w:trajectory):states = path(w)(ftime(w));

lstate(w:trajectory):states = path(w)(ltime(w));

time seq: TYPE = ft:[nat �> future] j t(0)=0 & (FORALL (n1,n2): n1<=n2 => t(n1)<=t(n2))g;

is glb(z:future,t:time seq,k:nat):bool = (t(k) <= z & (FORALL (m): m>k => z < t(m)));

has glb(z:future,t:time seq):bool = (EXISTS (k): is glb(z,t,k));

pos nat: TYPE = fn:nat j n > 0g;

non time action: TYPE = fa:actions j (NOT (time action?(a)))g;
action seq: TYPE = [pos nat �> non time action];

traj seq: TYPE = fw:[nat �> trajectory] j (FORALL (k): ltime(w(k)) = ftime(w(k+1)))g;

atexecs: TYPE = falpha : [# pi: action seq, w: traj seq, t: time seq #] j
start(fstate(w(alpha)(0)))

& (FORALL (k): t(alpha)(k)= ftime(w(alpha)(k)))
& (FORALL (k): step?(lstate(w(alpha)(k)), pi(alpha)(k+1), fstate(w(alpha)(k+1))))
& (FORALL (z): has glb(z,t(alpha))) g;

% The de�nitions and lemmas below are auxiliary to the main theory atexecs. They serve to
% illustrate one of the conveniences of a theorem proving system with a higher order logic: one can
% state such results as last event and �rst event that say that if there exists an event
% before (after) some state that satis�es some property Q, then there is a last (�rst) such event.

in trajectory(w:trajectory)(s:states):bool =
(EXISTS (t:future): t >= ftime(w) & t <= ltime(w) & path(w)(t) = s);

precedes(alpha:atexecs)(s1,s2:states):bool =
(now(s1) <= now(s2))

& (EXISTS (n1,n2):(in trajectory(w(alpha)(n2))(s2) & in trajectory(w(alpha)(n2))(s2)
& n1 <= n2));

precedes state(alpha:atexecs)(n1:posnat,s2:states):bool =
(t(alpha)(n1) <= now(s2))

& (EXISTS (n2): (in trajectory(w(alpha)(n2))(s2) & n1 <= n2));

precedes event(alpha:atexecs)(s1:states,n2:posnat):bool =
(now(s1) <= t(alpha)(n2))

& (EXISTS (n1): (in trajectory(w(alpha)(n1))(s1) & n1 <= n2�1));

state event prop: TYPE = [atexecs,states,posnat �> bool];
Q: state event prop;

last event: LEMMA (FORALL (alpha:atexecs, s:states, P:state event prop):
(LET Q = (LAMBDA(alpha:atexecs, s:states, n:pos nat):

(precedes state(alpha)(n,s) & P(alpha,s,n)))
IN (FORALL (n:posnat): (Q(alpha,s,n) =>

(EXISTS (m: posnat): m >= n & Q(alpha,s,m)
& (FORALL (k: posnat): k >= m & Q(alpha,s,k) => k = m))))));

�rst event: LEMMA (FORALL (alpha:atexecs, s:states, P:state event prop):
(LET Q = (LAMBDA(alpha:atexecs, s:states, n:pos nat):

(precedes event(alpha)(s,n) & P(alpha,s,n)))
IN (FORALL (n:posnat): (Q(alpha,s,n) =>

(EXISTS (m: posnat): m <= n & Q(alpha,s,m)
& (FORALL (k: posnat): k <= m & Q(alpha,s,k) => k = m))))));

END atexecs

26

B Appendix. Specifying the GRC Timed Automata Solution in

PVS

The speci�cation in Figure 6 shows how the de�nition of the timed automaton Trains from [12, 13] is
represented in PVS. Trains is a component of each of the timed automata used in deriving a solution to the
Generalized Railroad Crossing problem in [12, 13]. Figure 6 shows only the declarations needed to de�ne
the automaton Trains; the full theory of Trains also contains lemmas that have been proved about the
automaton.

In general, when using the template shown in Figure 4, it has proved convenient to organize the full theory
of a timed automaton into several PVS theories that group de�nitions and lemmas or theorems according to
their signi�cance, and to import these separate theories either directly or indirectly into a trivial top-level
theory. For any given automaton < timed automaton name >, we name the subsidiary theories according
to the following conventions:

1. < timed automaton name > decls contains the de�nitions required to instantiate the template;

2. < timed automaton name > unique aux contains the lemmas that document the fact that parame-
terized actions with distinct arguments are distinct;

3. < timed automaton name > invariants contains the state invariant de�nitions and corresponding state
invariant lemmas for the state invariants of < timed automaton name >;

4. < timed automaton name > atexecs aux contains the standard de�nitions and \IMPORTING atex-

ecs" declaration to de�ne the admissible timed executions of < timed automaton name >;

5. < timed automaton name > atexecs contains the lemmas, theorems, and any supporting de�nitions
concerning properties of the admissible timed executions of < timed automaton name >;

6. < timed automaton name > strat aux contains the lemmas needed to support the specialized strate-
gies designed for use in the ad hoc portions of proofs of properties of < timed automaton name >;

7. < timed automaton name > is the trivial top-level theory of < timed automaton name > that imports
all the subsidary theories.

The subsidary theories having the aux su�x have the potential of being generated automatically from
the information in the < timed automaton name > decls theory. For example,

(A) < timed automaton name > unique aux can be generated from the declaration of the actions

datatype;

(B) the de�nitions of Now, Nu, and step?, as well as the \IMPORTING atexecs" clause in the theory
axspec atexecs aux, are of a standard form, and are technically part of (an extended form of) the
template; and

(C) the lemmas in < timed automaton name > strat aux are identical in form for all applications.

The theory < timed automaton name > unique aux in (A) contains a set of lemmas about the unique-
ness of actions whose content is not part of the knowledge incorporated in existing PVS strategies, but which
are provable in PVS.15 In fact, the proofs of these lemmas could also be generated automatically.

The syntactic content of the theories in (B) and (C) is �xed, and can be considered an extension of the
template. Note that the lemmas in the theory < timed automaton name > strat aux need to be proved
at some point, in order to guarantee the soundness of proofs obtained using strategies that depend on the
lemmas. These lemmas need to be proved in an environment in which type of trans is known. One method
for providing such an environment is to import a theory into < timed automaton name > strat aux,

15The information that they contain is one example of the type of knowledge that is \obvious" to a human but not to PVS.
Note that the truth of this information depends on the fact that there are no equations postulated among elements of the data
type actions. PVS does not support the declaration of such equations, although other theorem proving systems, including LP,
do allow them.

27

directly or indirectly, in which trans is declared (following our naming conventions, this theory should be
< timed automaton name > decls). This is the method used in the speci�cations in this Appendix. Note
that it requires proving the lemmas anew for each timed automaton. Another method would be to de�ne
the lemmas within a theory to which trans is passed in as a parameter of known type. This second method
is used in our second template, which is shown in Appendix F. Using this method, the lemmas need to be
proved only once, at the top level.

The connections between the lemmas in the theory < timed automaton name > strat aux and our
domain speci�c strategies are made explicit in Appendix C.

Below, we present four full PVS theories in the order that the corresponding timed automata are de�ned
in [12, 13]: trains, the theory of Trains; axspec, the theory of AxSpec; opspec, the theory of OpSpec; and
systimpl, the theory of SystImpl. Not every one of these timed automata required all of the subtheories
listed above. For the timed automata Trains and Systimpl, we have only needed the theories described in
(1), (2), (3), and (7). For AxSpec, only (1), (2), (4), (5), and (7) are needed. OpSpec requires all seven
subtheories.

B.1 Appendix. The Full Theory of Trains in PVS

The speci�cation in Figure 6 shows how the de�nition of the timed automaton Trains from [12, 13] is
represented in PVS. The full theory trains of Trains also includes one invariant lemma: lemma 3 1. In
accordance with our naming conventions, lemma 3 1 appears in the subsidiary theory trains invariants.

trains decls: THEORY

BEGIN

IMPORTING time thy

delta t: VAR (�ntime?)
eps 1, eps 2: (�ntime?)

train: TYPE

r: VAR train

actions : DATATYPE

BEGIN
nu(timeof:(�ntime?)): nu?
enterR(Rtrainof:train): enterR?
enterI(Itrainof:train): enterI?
exit(Etrainof:train): exit?

END actions

a: VAR actions

status: TYPE = not here,P,I

MMTstates: TYPE = [train -> status]

IMPORTING states[actions,MMTstates,time,�ntime?]

status(r:train, s:states):status = basic(s)(r)

OKstate?(s:states):bool = true;

enabled general (a:actions, s:states):bool = now(s) >= �rst(s)(a) & now(s) <= last(s)(a);

enabled speci�c (a:actions, s:states):bool =
CASES a OF
nu(delta t): (FORALL r: now(s) + delta t <= last(s)(enterI(r))),
enterR(r): status(r,s) = not here,
enterI(r): status(r,s) = P & �rst(s)(a) <= now(s),
exit(r): status(r,s) = I

28

ENDCASES

trans (a:actions, s:states):states =
CASES a OF
nu(delta t): s WITH [now := now(s) + delta t],
enterR(r): (# basic := basic(s) WITH [r := P],

now := now(s),
�rst := �rst(s) WITH [(enterI(r)) := now(s)+eps 1],
last := last(s) WITH [(enterI(r)) := now(s)+eps 2] #),

enterI(r): (# basic := basic(s) WITH [r := I],
now := now(s),
�rst := �rst(s) WITH [(enterI(r)) := zero],
last := last(s) WITH [(enterI(r)) := in�nity] #),

exit(r): s WITH [basic := basic(s) WITH [r := not here]]
ENDCASES

enabled (a:actions, s:states):bool =
enabled general(a,s) & enabled speci�c(a,s) & OKstate?(trans(a,s));

start (s:states):bool =
s = (# basic := (LAMBDA r: not here),

now := zero,
�rst := (LAMBDA a: zero),
last := (LAMBDA a: in�nity) #)

IMPORTING machine[states, actions, enabled, trans, start]

END trains decls

trains unique aux: THEORY

BEGIN

IMPORTING trains decls

enterR unique: LEMMA (FORALL (r1, r2: train): (enterR(r1) = enterR(r2) => r1 = r2));
enterI unique: LEMMA (FORALL (r1, r2: train): (enterI(r1) = enterI(r2) => r1 = r2));
exit unique: LEMMA (FORALL (r1, r2: train): (exit(r1) = exit(r2) => r1 = r2));
nu unique: LEMMA (FORALL (t1, t2: (�ntime?)): (nu(t1) = nu(t2) => t1 = t2));

END trains unique aux

trains invariants: THEORY

BEGIN

IMPORTING trains unique aux

Inv 3 1(s: states):bool =
(FORALL (r: train): (status(r,s) = P =>

�rst(s)(enterI(r)) + eps 2 - eps 1 = last(s)(enterI(r))));

lemma 3 1: LEMMA (FORALL (s: states): reachable(s) => Inv 3 1(s));

END trains invariants

trains: THEORY

BEGIN

IMPORTING trains invariants

END trains

29

B.2 Appendix. Representing the Automaton AxSpec in PVS

Below, we present the theory axspec, which is the translation into PVS of the theory of the automaton
AxSpec from [12, 13].

The automaton AxSpec includes axiomatic versions of the Safety and Utility Properties as part of its
de�nition, so we wish to include these in the full corresponding PVS theory axspec. Since the Safety and
Utility axioms restrict the admissible timed executions of AxSpec, they are de�ned in the subsidiary theory
axspec atexecs.

Note that the use of subtraction in the time expressions appearing in the inequalities involved in the
de�nition of the Utility Property axiom has been avoided by following the convention of replacing the
inequalities with equivalent ones involving only addition. Doing this results in reducing the number and
complexity of the cases to be considered in PVS proofs relying on these inequalities. It also ensures that the
inequalities have the same semantics as if they permitted negative values to result from subtractions, as is
typically assumed in hand proofs involving values in R�0

[f1g. We have included the original formulations
of the de�nitions for comparison. This particular convention for �tting an automaton speci�cation to our
PVS template could be automated.

axspec decls: THEORY

BEGIN

train: TYPE;

r,r1: VAR train;

IMPORTING time thy

t, delta t: VAR time;
eps 1, eps 2, gamma down, gamma up, xi 1, xi 2, delta: (�ntime?);

actions : DATATYPE

BEGIN
nu(timeof:(�ntime?)): nu?
enterR(Rtrainof:train): enterR?
enterI(Itrainof:train): enterI?
exit(Etrainof:train): exit?
lower: lower?
raise: raise?
up: up?
down: down?

END actions;

a: VAR actions;

train status: TYPE = not here,P,I;

gate status: TYPE = fully up,fully down,going up,going down;

MMTstates: TYPE = [# trains part: [train �> train status], gate part: gate status #];

IMPORTING states[actions,MMTstates,time,�ntime?]

s1: VAR states;

status(r:train, s:states):train status = trains part(basic(s))(r);

gate status(s:states):gate status = gate part(basic(s));

OKstate?(s:states):bool = true;

enabled general (a:actions, s:states):bool = now(s) >= �rst(s)(a) & now(s) <= last(s)(a);

enabled speci�c (a:actions, s:states):bool =
CASES a OF
nu(delta t): (delta t > zero

& (FORALL r: now(s) + delta t <= last(s)(enterI(r)))

30

& now(s) + delta t <= last(s)(up)
& now(s) + delta t <= last(s)(down)),

enterR(r): status(r,s) = not here,
enterI(r): status(r,s) = P & �rst(s)(a) <= now(s),
exit(r): status(r,s) = I,
lower: true,
raise: true,
up: gate status(s) = going up,
down: gate status(s) = going down

ENDCASES;

trans (a:actions, s:states):states =
CASES a OF
nu(delta t): s WITH [now := now(s)+delta t],
enterR(r): s WITH [basic := basic(s) WITH

[trains part := trains part(basic(s)) WITH [r := P]],
�rst := �rst(s) WITH [(enterI(r)) := now(s)+eps 1],
last := last(s) WITH [(enterI(r)) := now(s)+eps 2]],

enterI(r): s WITH [basic := basic(s) WITH
[trains part := trains part(basic(s)) WITH [r := I]],
�rst := �rst(s) WITH [(enterI(r)) := zero],
last := last(s) WITH [(enterI(r)) := in�nity]],

exit(r): s WITH [basic := basic(s) WITH
[trains part := trains part(basic(s)) WITH [r := not here]]],

lower: IF gate status (s) = fully up OR gate status(s) = going up
THEN s WITH [basic := basic(s) WITH [gate part := going down],

last := last(s) WITH
[down := now(s) + gamma down, up := in�nity]]

ELSE s ENDIF,
raise: IF gate status(s) = fully down OR gate status(s) = going down

THEN s WITH [basic := basic(s) WITH [gate part := going up],
last := last(s) WITH
[up := now(s) + gamma up, down := in�nity]]

ELSE s ENDIF,
up: s WITH [basic := basic(s) WITH [gate part := fully up],

last := last(s) WITH [up := in�nity]],
down: s WITH [basic := basic(s) WITH [gate part := fully down],

last := last(s) WITH [down := in�nity]]
ENDCASES

enabled (a:actions, s:states):bool = enabled general(a,s) & enabled speci�c(a,s);

start (s:states):bool =
s = (# basic := (# trains part := (LAMBDA r: not here), gate part := fully up #),

now := zero,
�rst := (LAMBDA a: zero),
last := (LAMBDA a: in�nity) #);

IMPORTING machine[states, actions, enabled, trans, start]

END axspec decls

axspec unique aux: THEORY

BEGIN

IMPORTING axspec decls

enterR unique: LEMMA (FORALL (r1, r2: train): (enterR(r1) = enterR(r2) => r1 = r2));
enterI unique: LEMMA (FORALL (r1, r2: train): (enterI(r1) = enterI(r2) => r1 = r2));

31

exit unique: LEMMA (FORALL (r1, r2: train): (exit(r1) = exit(r2) => r1 = r2));
nu unique: LEMMA (FORALL (t1, t2: (�ntime?)): (nu(t1) = nu(t2) => t1 = t2));

END axspec unique aux

axspec atexecs aux: THEORY

BEGIN

IMPORTING axspec unique aux

step? (s1:states, a:actions, s2:states): bool = enabled(a,s1) & s2 = trans(a,s1);

Now (s: states): fz:real j z>=0g = dur(now(s));

Nu (z: fz:real j z>0g): actions = nu(�ntime(z: fz:real j z>=0g));

IMPORTING atexecs [states, actions, start, Now, step?, Nu]

END axspec atexecs aux

axspec atexecs: THEORY

BEGIN

IMPORTING axspec atexecs aux

safety: AXIOM (FORALL (alpha: atexecs): (FORALL (s: states):
(in atexec(alpha)(s) => ((EXISTS (r:train): status(r,s)=I) => gate status(s)=fully down))));

% utility prop a (alpha:atexecs, s:states): bool =
% (EXISTS (s1:states):
% (precedes(alpha)(s1,s) & (EXISTS (r:train): status(r,s1) = I) & now(s1) >= now(s) � xi 2));

utility prop a (alpha:atexecs, s:states): bool =
(EXISTS (s1:states):
(precedes(alpha)(s1,s) & (EXISTS (r:train): status(r,s1) = I) & now(s1) + xi 2 >= now(s)));

utility prop b (alpha:atexecs, s:states): bool =
(EXISTS (s1:states):
(precedes(alpha)(s,s1) & (EXISTS (r:train): status(r,s1) = I) & now(s1) <= now(s) + xi 1));

% utility prop c (alpha:atexecs, s:states): bool =
% (EXISTS (s1,s2:states):
% precedes(alpha)(s1,s) & precedes(alpha)(s,s2)
% & (EXISTS (r:train):status(r,s1)=I) & (EXISTS (r:train):status(r,s2)=I)
% & now(s2) � now(s1) <= xi 1 + xi 2 + delta);

utility prop c (alpha:atexecs, s:states): bool =
(EXISTS (s1,s2:states):

precedes(alpha)(s1,s) & precedes(alpha)(s,s2)
& (EXISTS (r:train):status(r,s1)=I) & (EXISTS (r:train):status(r,s2)=I)
& now(s2) <= xi 1 + xi 2 + delta + now(s1));

utility: AXIOM (FORALL (alpha: atexecs): (FORALL (s: states):
((in atexec(alpha)(s) & NOT(gate status(s) = fully up)) =>

(utility prop a(alpha,s) OR utility prop b(alpha,s) OR utility prop c(alpha,s)))));

END axspec atexecs

axspec : THEORY

BEGIN

IMPORTING axspec atexecs

END axspec

32

B.3 Appendix. The Timed Automaton OpSpec in PVS: Version 1

The timed automaton OpSpec de�ned in [12, 13] is the composition of three timed automata: Trains, Gate,
and CompSpec. In our study, we have �rst composed these automata by hand into a a single timed automaton,
which we then de�ned by completing our template speci�cation.

The complete theory of OpSpec includes several state invariant lemmas and a few results about admissible
timed executions of OpSpec|most notably, two major theorems, the Safety Property and the Utility Prop-
erty for OpSpec, which appear in the theory opspec atexecs. This theory also contains a major lemma
(lemma E 1) and three de�nitions needed to state and prove the Utility Property. A heavily annotated
version of the PVS proof of lemma E 1 (which corresponds to Lemma E.1 in [12]) appears in Appendix E.

opspec decls: THEORY

BEGIN

train: TYPE

r,r1: VAR train

IMPORTING time thy

beta posreal: fr:real j r > 0g;
delta t: VAR (�ntime?)
eps 1, eps 2, gamma down, gamma up, xi 1, xi 2, delta: (�ntime?)
beta:(�ntime?) = �ntime(beta posreal:fr:real j r >= 0g);

const facts: AXIOM
(eps 1 <= eps 2
& eps 1 > gamma down
& xi 1 >= gamma down + beta + eps 2 � eps 1
& xi 2 >= gamma up);

actions : DATATYPE

BEGIN

nu(timeof:(�ntime?)): nu?
enterR(Rtrainof:train): enterR?
enterI(Itrainof:train): enterI?
exit(Etrainof:train): exit?
lower: lower?
raise: raise?
up: up?
down: down?

END actions;

a: VAR actions;

train status: TYPE = fnot here,P,Ig;

gate status: TYPE = ffully up,fully down,going up,going downg;

MMTstates: TYPE = [# trains part: [train �> train status],
gate part: gate status,
last 1 part, last 2 up part, last 2 I part: time #];

IMPORTING states[actions,MMTstates,time,�ntime?]

s1: VAR states;

status(r:train, s:states):train status = trains part(basic(s))(r);

33

gate status(s:states):gate status = gate part(basic(s));

last 1(s:states):time = last 1 part(basic(s));

last 2 up(s:states):time = last 2 up part(basic(s));

last 2 I(s:states):time = last 2 I part(basic(s));

OKstate? (s:states): bool =
((EXISTS (r:train): status(r,s) = I) => gate status(s) = fully down);

OKstates: TYPE = (OKstate?);

enabled general (a:actions, s:states):bool =
now(s) >= �rst(s)(a) & now(s) <= last(s)(a);

enabled speci�c (a:actions, s:states):bool =
CASES a OF
nu(delta t): (delta t > zero

& (FORALL r: now(s) + delta t <= last(s)(enterI(r)))
& now(s) + delta t <= last(s)(up)
& now(s) + delta t <= last(s)(down)
& now(s) + delta t <= last 1(s)
& now(s) + delta t <= last 2 I(s)),

enterR(r): status(r,s) = not here,
enterI(r): status(r,s) = P & �rst(s)(a) <= now(s),
exit(r): status(r,s) = I,
lower: true,
raise: true,
up: gate status(s) = going up,
down: gate status(s) = going down

ENDCASES;

trans (a:actions, s:states):states =
CASES a OF
nu(delta t): s WITH [now := now(s)+delta t],
enterR(r): s WITH [basic := basic(s) WITH

[trains part := trains part(basic(s)) WITH [r := P]],
�rst := �rst(s) WITH [(enterI(r)) := now(s)+eps 1],
last := last(s) WITH [(enterI(r)) := now(s)+eps 2]],

enterI(r): s WITH [basic := basic(s) WITH
[trains part := trains part(basic(s)) WITH [r := I],
last 1 part := in�nity,
last 2 up part := in�nity,
last 2 I part := in�nity],

�rst := �rst(s) WITH [(enterI(r)) := zero],
last := last(s) WITH [(enterI(r)) := in�nity]],

exit(r): LET s1 = s WITH [basic := basic(s) WITH
[trains part := trains part(basic(s)) WITH
[r := not here]]]

IN IF (FORALL (r1: train): (NOT (r1 = r)) => (NOT status(r1,s) = I))
THEN s1 WITH [basic := basic(s1) WITH

[last 2 up part := now(s) + xi 2,
last 2 I part := now(s) + xi 2 + delta + xi 1]]

ELSE s1 ENDIF,
lower: IF gate status (s) = fully up OR gate status(s) = going up

THEN LET s1 = s WITH
[basic := basic(s) WITH [gate part := going down],

34

last := last(s) WITH
[down := now(s) + gamma down, up := in�nity]]

IN IF last 1 part(basic(s)) = in�nity
THEN s1 WITH

[basic:= basic(s1) WITH [last 1 part:= now(s)+xi 1]]
ELSE s1 ENDIF

ELSE s ENDIF,
raise: IF gate status(s) = fully down OR gate status(s) = going down

THEN s WITH [basic := basic(s) WITH [gate part := going up],
last := last(s) WITH
[up := now(s) + gamma up, down := in�nity]]

ELSE s ENDIF,
up: LET s1 = s WITH [basic := basic(s) WITH [gate part := fully up],

last := last(s) WITH [up := in�nity]]
IN IF now(s) <= last 2 up part(basic(s))

THEN s1 WITH [basic := basic(s1) WITH
[last 2 up part:= in�nity, last 2 I part:= in�nity]]

ELSE s1 ENDIF,
down: s WITH [basic := basic(s) WITH [gate part := fully down],

last := last(s) WITH [down := in�nity]]
ENDCASES

enabled (a:actions, s:states):bool =
enabled general(a,s) & enabled speci�c(a,s) & OKstate?(trans(a,s));

start (s:states):bool =
s = (# basic := (# trains part := (LAMBDA r: not here),

gate part := fully up,
last 1 part := in�nity,
last 2 up part := in�nity,
last 2 I part := in�nity #),

now := zero,
�rst := (LAMBDA a: zero),
last := (LAMBDA a: in�nity) #)

rans, start]

END opspec decls

opspec unique aux: THEORY

BEGIN

IMPORTING opspec decls

enterR unique: LEMMA (FORALL (r1, r2: train): (enterR(r1) = enterR(r2) => r1 = r2));
enterI unique: LEMMA (FORALL (r1, r2: train): (enterI(r1) = enterI(r2) => r1 = r2));
exit unique: LEMMA (FORALL (r1, r2: train): (exit(r1) = exit(r2) => r1 = r2));
nu unique: LEMMA (FORALL (t1, t2: (�ntime?)): (nu(t1) = nu(t2) => t1 = t2));

END opspec unique aux

opspec invariants: THEORY

BEGIN

IMPORTING opspec unique aux

35

Inv 4 1 1(s: states):bool =
(EXISTS (r: train): (status(r,s) = I)) => gate status(s) = fully down;

lemma 4 1 1: LEMMA (FORALL (s: states): reachable(s) => Inv 4 1 1(s));

Inv 4 1 2(s: states):bool = (last 2 up(s) + delta + xi 1 = last 2 I(s));

lemma 4 1 2: LEMMA (FORALL (s: states): reachable(s) => Inv 4 1 2(s));

Inv 4 2 1(s: states):bool = (now(s) <= last 1(s));

lemma 4 2 1: LEMMA (FORALL (s: states): reachable(s) => Inv 4 2 1(s));

Inv 4 2 2(s: states):bool = (now(s) <= last 2 I(s));

lemma 4 2 2: LEMMA (FORALL (s: states): reachable(s) => Inv 4 2 2(s));

Inv 4 2 3(s: states):bool =
(NOT (last 1(s) = in�nity)) => (last 1(s) <= now(s) + xi 1);

lemma 4 2 3: LEMMA (FORALL (s: states): reachable(s) => Inv 4 2 3(s));

Inv 4 2 4(s: states):bool =
(NOT (last 2 I(s) = in�nity)) => (last 2 I(s) <= now(s) + xi 2 + delta + xi 1);

lemma 4 2 4: LEMMA (FORALL (s: states): reachable(s) => Inv 4 2 4(s));

Inv 4 2 5(s: states):bool =
(NOT (last 2 up(s) = in�nity)) => (last 2 up(s) <= now(s) + xi 2);

lemma 4 2 5: LEMMA (FORALL (s: states): reachable(s) => Inv 4 2 5(s));

END opspec invariants

opspec atexecs aux: THEORY

BEGIN

IMPORTING opspec invariants

step? (s1:states, a:actions, s2:states): bool = enabled(a,s1) & s2 = trans(a,s1);

Now (s: states): fz:real j z>=0g = dur(now(s));

Nu (z: fz:real j z>0g): actions = nu(�ntime(z: fz:real j z>=0g));

IMPORTING atexecs [states, actions, start, Now, step?, Nu]

A: var atexecs;

reach equiv: LEMMA (FORALL (s: states): (FORALL (n: nat):
steps reach(n, s) => reachable(s)));

reach equiv 2: LEMMA (FORALL (s: states): (EXISTS (n: nat):
steps reach(n, s)) => reachable(s));

reachability: LEMMA (FORALL (alpha: atexecs): (FORALL (s: states):
(in atexec(alpha)(s) => reachable(s))));

last 1 interval 0: LEMMA (FORALL (alpha: atexecs): (FORALL (j: nat): (FORALL (s: states):
(in trajectory(w(alpha)(j))(s) => (last 1(s) = last 1(fstate(w(alpha)(j))))))));

last 1 interval: LEMMA (FORALL (alpha: atexecs): (FORALL (j: nat):
(last 1(lstate(w(alpha)(j))) = last 1(fstate(w(alpha)(j))))));

gate status interval 0: LEMMA (FORALL(alpha:atexecs):(FORALL(j:nat):(FORALL(s:states):
(in trajectory(w(alpha)(j))(s) => (gate status(s) = gate status(fstate(w(alpha)(j))))))));

36

gate status interval: LEMMA (FORALL (alpha: atexecs): (FORALL (j: nat):
(gate status(lstate(w(alpha)(j))) = gate status(fstate(w(alpha)(j))))));

status interval 0: LEMMA (FORALL (alpha: atexecs): (FORALL (j: nat): (FORALL (s: states):
(in trajectory(w(alpha)(j))(s)
=> (FORALL (r: train): (status(r,s) = status(r,fstate(w(alpha)(j)))))))));

status interval: LEMMA (FORALL (alpha: atexecs): (FORALL (j: nat): (FORALL (r: train):
(status(r,lstate(w(alpha)(j))) = status(r,fstate(w(alpha)(j)))))));

last 2 up interval 0: LEMMA (FORALL (alpha:atexecs): (FORALL (j:nat): (FORALL (s:states):
(in trajectory(w(alpha)(j))(s) => (last 2 up(s) = last 2 up(fstate(w(alpha)(j))))))));

last 2 up interval: LEMMA (FORALL (alpha: atexecs): (FORALL (j: nat):
(last 2 up(lstate(w(alpha)(j))) = last 2 up(fstate(w(alpha)(j))))));

last 2 I interval 0: LEMMA (FORALL (alpha:atexecs): (FORALL (j:nat): FORALL (s:states):
(in trajectory(w(alpha)(j))(s) => (last 2 I(s) = last 2 I(fstate(w(alpha)(j))))))));

last 2 I interval: LEMMA (FORALL (alpha: atexecs): (FORALL (j: nat):
(last 2 I(lstate(w(alpha)(j))) = last 2 I(fstate(w(alpha)(j))))));

trajectory unique: AXIOM (FORALL(alpha:atexecs):(FORALL (s:states):(FORALL (n1,n2:nat):
(in trajectory(w(alpha)(n1))(s) & in trajectory(w(alpha)(n2))(s)) => n1 = n2)));

last 2 I �xed: LEMMA (FORALL (alpha: atexecs): (FORALL (j,k: nat):
(j <= k
& (FORALL (m: nat): (j < m & m <= k) => (not(exit?(pi(alpha)(m)))

& not(enterI?(pi(alpha)(m)))
& not(up?(pi(alpha)(m))))))

=> last 2 I(fstate(w(alpha)(k))) = last 2 I(fstate(w(alpha)(j)))));

last 2 up �xed: LEMMA (FORALL (alpha: atexecs): (FORALL (j,k: nat):
(j <= k
& (FORALL (m: nat): (j < m & m <= k) => (not(exit?(pi(alpha)(m)))

& not(enterI?(pi(alpha)(m)))
& not(up?(pi(alpha)(m))))))

=> last 2 up(fstate(w(alpha)(k))) = last 2 up(fstate(w(alpha)(j)))));

END opspec atexecs aux

opspec strat aux: THEORY

BEGIN

IMPORTING opspec atexecs aux

event times: LEMMA (FORALL (alpha:atexecs, n:nat):
ftime(w(alpha)(n)) = t(alpha)(n) &
Now(path(w(alpha)(n))(t(alpha)(n))) = t(alpha)(n) &
Now(path(w(alpha)(n))(ftime(w(alpha)(n)))) = t(alpha)(n) &
dur(now(path(w(alpha)(n))(t(alpha)(n)))) = t(alpha)(n) &
dur(now(path(w(alpha)(n))(ftime(w(alpha)(n))))) = t(alpha)(n) &
(n > 0 => (ltime(w(alpha)(n � 1)) = t(alpha)(n) &

ftime(w(alpha)(n � 1)) + length(w(alpha)(n�1)) = t(alpha)(n) &
Now(path(w(alpha)(n � 1))(t(alpha)(n))) = t(alpha)(n) &
Now(path(w(alpha)(n � 1))(ftime(w(alpha)(n)))) = t(alpha)(n) &
dur(now(path(w(alpha)(n � 1))(t(alpha)(n)))) = t(alpha)(n) &
dur(now(path(w(alpha)(n � 1))(ftime(w(alpha)(n))))) = t(alpha)(n))));

37

same states: LEMMA (FORALL (alpha:atexecs, n:nat):
fstate(w(alpha)(n)) = path(w(alpha)(n))(t(alpha)(n)) &
lstate(w(alpha)(n)) = path(w(alpha)(n))(t(alpha)(n + 1)) &
(n > 0 => lstate(w(alpha)(n�1)) = path(w(alpha)(n�1))(t(alpha)(n))) &
trans(pi(alpha)(n + 1), lstate(w(alpha)(n))) = path(w(alpha)(n + 1))(t(alpha)(n + 1)) &
trans(pi(alpha)(n + 1), path(w(alpha)(n))(t(alpha)(n + 1)))

= path(w(alpha)(n + 1))(t(alpha)(n + 1)) &
LET (dt:fz:realjz>=0g) = t(alpha)(n + 1) � t(alpha)(n) IN

(dt >= 0 & (dt > 0 => trans(nu(�ntime(dt)),fstate(w(alpha)(n))) = lstate(w(alpha)(n)))));

event times 1: LEMMA (FORALL (alpha:atexecs, n:nat):
ftime(w(alpha)(n)) = t(alpha)(n));

event times 2: LEMMA (FORALL (alpha:atexecs, n:nat):
(t(alpha)(n+1) � t(alpha)(n) >= 0) = TRUE);

event times 3: LEMMA (FORALL (alpha:atexecs, n:nat):
(t(alpha)(n+1) >= t(alpha)(n)) = TRUE);

event times 4: LEMMA (FORALL (alpha:atexecs, n:nat):
(t(alpha)(n) <= t(alpha)(n+1)) = TRUE);

event times 5: LEMMA (FORALL (alpha:atexecs, n:nat):
Now(path(w(alpha)(n))(t(alpha)(n))) = t(alpha)(n));

event times 6: LEMMA (FORALL (alpha:atexecs, n:nat):
Now(path(w(alpha)(n))(ftime(w(alpha)(n)))) = t(alpha)(n));

event times 7: LEMMA (FORALL (alpha:atexecs, n:nat):
dur(now(path(w(alpha)(n))(t(alpha)(n)))) = t(alpha)(n));

event times 8: LEMMA (FORALL (alpha:atexecs, n:nat):
dur(now(path(w(alpha)(n))(ftime(w(alpha)(n))))) = t(alpha)(n));

event times 9: LEMMA (FORALL (alpha:atexecs, n:nat):
now(path(w(alpha)(n))(t(alpha)(n))) = �ntime(t(alpha)(n)));

event times 10: LEMMA (FORALL (alpha:atexecs, n:nat):
now(path(w(alpha)(n))(ftime(w(alpha)(n)))) = �ntime(t(alpha)(n)));

event times 11: LEMMA (FORALL (alpha:atexecs, n:nat):
ltime(w(alpha)(n)) = t(alpha)(n+1));

event times 12: LEMMA (FORALL (alpha:atexecs, n:nat):
ftime(w(alpha)(n)) + length(w(alpha)(n)) = t(alpha)(n+1));

event times 13: LEMMA (FORALL (alpha:atexecs, n:nat):
length(w(alpha)(n)) + ftime(w(alpha)(n)) = t(alpha)(n+1));

event times 14: LEMMA (FORALL (alpha:atexecs, n:nat):
t(alpha)(n) + length(w(alpha)(n)) = t(alpha)(n+1));

event times 15: LEMMA (FORALL (alpha:atexecs, n:nat):
length(w(alpha)(n)) + t(alpha)(n) = t(alpha)(n+1));

event times 16: LEMMA (FORALL (alpha:atexecs, n:nat):
Now(path(w(alpha)(n))(t(alpha)(n+1))) = t(alpha)(n+1));

event times 17: LEMMA (FORALL (alpha:atexecs, n:nat):
Now(path(w(alpha)(n))(ftime(w(alpha)(n+1)))) = t(alpha)(n+1));

event times 18: LEMMA (FORALL (alpha:atexecs, n:nat):
dur(now(path(w(alpha)(n))(t(alpha)(n+1)))) = t(alpha)(n+1));

event times 19: LEMMA (FORALL (alpha:atexecs, n:nat):
dur(now(path(w(alpha)(n))(ftime(w(alpha)(n+1))))) = t(alpha)(n+1));

event times 20: LEMMA (FORALL (alpha:atexecs, n:nat):
now(path(w(alpha)(n))(t(alpha)(n+1))) = �ntime(t(alpha)(n+1)));

event times 21: LEMMA (FORALL (alpha:atexecs, n:nat):
now(path(w(alpha)(n))(ftime(w(alpha)(n+1)))) = �ntime(t(alpha)(n+1)));

same states 22: LEMMA (FORALL (alpha:atexecs, n:posnat):
(t(alpha)(n) � t(alpha)(n�1) >= 0) = TRUE);

38

event times 23: LEMMA (FORALL (alpha:atexecs, n:posnat):
(t(alpha)(n) >= t(alpha)(n�1)) = TRUE);

event times 24: LEMMA (FORALL (alpha:atexecs, n:posnat):
(t(alpha)(n�1) <= t(alpha)(n)) = TRUE);

event times 25: LEMMA (FORALL (alpha:atexecs, n:posnat):
ltime(w(alpha)(n�1)) = t(alpha)(n));

event times 26: LEMMA (FORALL (alpha:atexecs, n:posnat):
ftime(w(alpha)(n�1)) + length(w(alpha)(n�1)) = t(alpha)(n));

event times 27: LEMMA (FORALL (alpha:atexecs, n:posnat):
length(w(alpha)(n�1)) + ftime(w(alpha)(n�1)) = t(alpha)(n));

event times 28: LEMMA (FORALL (alpha:atexecs, n:posnat):
t(alpha)(n�1) + length(w(alpha)(n�1)) = t(alpha)(n));

event times 29: LEMMA (FORALL (alpha:atexecs, n:posnat):
length(w(alpha)(n�1)) + t(alpha)(n�1) = t(alpha)(n));

event times 30: LEMMA (FORALL (alpha:atexecs, n:posnat):
Now(path(w(alpha)(n�1))(t(alpha)(n))) = t(alpha)(n));

event times 31: LEMMA (FORALL (alpha:atexecs, n:posnat):
Now(path(w(alpha)(n�1))(ftime(w(alpha)(n)))) = t(alpha)(n));

event times 32: LEMMA (FORALL (alpha:atexecs, n:posnat):
dur(now(path(w(alpha)(n�1))(t(alpha)(n)))) = t(alpha)(n));

event times 33: LEMMA (FORALL (alpha:atexecs, n:posnat):
dur(now(path(w(alpha)(n�1))(ftime(w(alpha)(n))))) = t(alpha)(n));

event times 34: LEMMA (FORALL (alpha:atexecs, n:posnat):
now(path(w(alpha)(n�1))(t(alpha)(n))) = �ntime(t(alpha)(n)));

event times 35: LEMMA (FORALL (alpha:atexecs, n:posnat):
now(path(w(alpha)(n�1))(ftime(w(alpha)(n)))) = �ntime(t(alpha)(n)));

trans facts: LEMMA (FORALL (alpha:atexecs, n:nat):
trans(pi(alpha)(n+1), lstate(w(alpha)(n))) = path(w(alpha)(n+1))(t(alpha)(n+1)) &
trans(pi(alpha)(n+1), path(w(alpha)(n))(t(alpha)(n+1)))

= path(w(alpha)(n+1))(t(alpha)(n+1)) &
((t(alpha)(n+1) � t(alpha)(n) > 0) =>
trans(nu(�ntime((t(alpha)(n+1) � t(alpha)(n)):fr:realjr>=0g)), fstate(w(alpha)(n)))

= lstate(w(alpha)(n))) &
(n > 0 =>
trans(pi(alpha)(n), lstate(w(alpha)(n�1))) = path(w(alpha)(n))(t(alpha)(n)) &
trans(pi(alpha)(n), path(w(alpha)(n�1))(t(alpha)(n))) = path(w(alpha)(n))(t(alpha)(n)) &
((t(alpha)(n) � t(alpha)(n�1) > 0) =>
trans(nu(�ntime((t(alpha)(n) � t(alpha)(n�1)):fr:realjr>=0g)), fstate(w(alpha)(n�1)))

= lstate(w(alpha)(n�1)))));

same states 1: LEMMA (FORALL (alpha:atexecs, n:nat):
fstate(w(alpha)(n)) = path(w(alpha)(n))(t(alpha)(n)));

same states 2: LEMMA (FORALL (alpha:atexecs, n:nat):
lstate(w(alpha)(n)) = path(w(alpha)(n))(t(alpha)(n+1)));

same states 3: LEMMA (FORALL (alpha:atexecs, n:posnat):
lstate(w(alpha)(n�1)) = path(w(alpha)(n�1))(t(alpha)(n)));

reachable states: LEMMA (FORALL (alpha:atexecs, n:nat):
reachable(fstate(w(alpha)(n))) &
reachable(lstate(w(alpha)(n))) &
reachable(path(w(alpha)(n))(ftime(w(alpha)(n)))) &
reachable(path(w(alpha)(n))(ltime(w(alpha)(n)))) &
reachable(path(w(alpha)(n))(t(alpha)(n))) &
reachable(path(w(alpha)(n))(t(alpha)(n+1))));

39

glb fact: LEMMA (FORALL (alpha:atexecs, B:future):
(EXISTS (k:nat): t(alpha)(k) <= B & B < t(alpha)(k+1)));

time relation: LEMMA (FORALL (alpha:atexecs, t1,t2:nat):
(t1 <= t2 => t(alpha)(t1) <= t(alpha)(t2)) & (t2 <= t1 => t(alpha)(t2) <= t(alpha)(t1)));

END opspec strats aux

opspec atexecs: THEORY

BEGIN

IMPORTING opspec strat aux

lemma E 1: LEMMA (FORALL (alpha: atexecs): (FORALL (n: pos nat):
pi(alpha)(n) = lower
& (gate status(lstate(w(alpha)(n�1))) = going up OR

gate status(lstate(w(alpha)(n�1))) = fully up))
=> (EXISTS (m: pos nat):

(m > n & (EXISTS (r: train): pi(alpha)(m) = enterI(r))
& �ntime(t(alpha)(m)) <= �ntime(t(alpha)(n)) + xi 1))));

safety: THEOREM (FORALL (alpha: atexecs): (FORALL (s: states):
(in atexec(alpha)(s) => ((EXISTS (r:train): status(r,s)=I) => gate status(s)=fully down))));

% utility prop a (alpha:atexecs, s:states): bool =
% (EXISTS (s1:states):
% (precedes(alpha)(s1,s) & (EXISTS (r:train): status(r,s1) = I) & now(s1) >= now(s) � xi 2));

utility prop a (alpha:atexecs, s:states): bool =
(EXISTS (s1:states):
(precedes(alpha)(s1,s) & (EXISTS (r:train): status(r,s1) = I) & now(s1) + xi 2 >= now(s)));

utility prop b (alpha:atexecs, s:states): bool =
(EXISTS (s1:states):
(precedes(alpha)(s,s1) & (EXISTS (r:train): status(r,s1) = I) & now(s1) <= now(s) + xi 1));

% utility prop c (alpha:atexecs, s:states): bool =
% (EXISTS (s1,s2:states):
% precedes(alpha)(s1,s) & precedes(alpha)(s,s2)
% & (EXISTS (r:train):status(r,s1)=I) & (EXISTS (r:train):status(r,s2)=I)
% & now(s2) � now(s1) <= xi 1 + xi 2 + delta);

utility prop c (alpha:atexecs, s:states): bool =
(EXISTS (s1,s2:states):

precedes(alpha)(s1,s) & precedes(alpha)(s,s2)
& (EXISTS (r:train):status(r,s1)=I) & (EXISTS (r:train):status(r,s2)=I)
& now(s2) <= xi 1 + xi 2 + delta + now(s1));

utility: THEOREM (FORALL (alpha: atexecs): (FORALL (s: states):
((in atexec(alpha)(s) & NOT(gate status(s) = fully up)) =>

(utility prop a(alpha,s) OR utility prop b(alpha,s) OR utility prop c(alpha,s)))));

END opspec atexecs

opspec : THEORY

BEGIN

IMPORTING opspec atexecs

END opspec

40

B.4 Appendix. The Timed Automaton SystImpl in PVS

The PVS speci�cation of the full theory of SystImpl is structured analogously to that of Trains.

systimpl decls: THEORY

BEGIN

train: TYPE

r,r1: VAR train

IMPORTING time thy

beta posreal: fr:real j r > 0g;
delta t: VAR (�ntime?)
eps 1, eps 2, gamma down, gamma up, xi 1, xi 2, delta: (�ntime?)
beta:(�ntime?) = �ntime(beta posreal:fr:real j r >= 0g);

const facts: AXIOM
(eps 1 <= eps 2
& eps 1 > gamma down
& xi 1 + eps 1>= gamma down + beta + eps 2
& xi 2 >= gamma up);

actions : DATATYPE

BEGIN
nu(timeof:(�ntime?)): nu?
enterR(Rtrainof:train): enterR?
enterI(Itrainof:train): enterI?
exit(Etrainof:train): exit?
lower: lower?
raise: raise?
up: up?
down: down?

END actions;

a: VAR actions;

train status: TYPE = fnot here,P,Ig;

gate status: TYPE = ffully up,fully down,going up,going downg;

comp train status: TYPE = fcomp not here,Rg;

comp gate status: TYPE = fcomp up,comp downg;

MMTstates: TYPE = [# trains part: [train �> train status],
gate part: gate status,
comp train status part: [train �> comp train status],
comp sched time part: [train �> time],
comp gate status part: comp gate status #];

IMPORTING states[actions,MMTstates,time,�ntime?]

s1: VAR states;

status(r:train, s:states):train status = trains part(basic(s))(r);

gate status(s:states):gate status = gate part(basic(s));

comp status(r:train, s:states):comp train status = comp train status part(basic(s))(r);

sched time(r:train, s:states):time = comp sched time part(basic(s))(r);

comp gate status(s:states):comp gate status = comp gate status part(basic(s));

41

OKstate?(s:states):bool = true;

enabled general (a:actions, s:states):bool = now(s) >= �rst(s)(a) & now(s) <= last(s)(a);

enabled speci�c (a:actions, s:states):bool =
CASES a OF
nu(delta t): (delta t > zero

& (FORALL r: now(s) + delta t <= last(s)(enterI(r)))
& now(s) + delta t <= last(s)(up)
& now(s) + delta t <= last(s)(down)
& (comp gate status(s) = comp up =>

enterR(r): status(r,s) = not here,
enterI(r): status(r,s) = P & �rst(s)(a) <= now(s),
exit(r): status(r,s) = I,

(FORALL r: now(s) + delta t + gamma down < sched time(r,s)))
& (comp gate status(s) = comp down =>
(EXISTS r: sched time(r,s) <=

now(s) + gamma up + delta + gamma down))),
lower: comp gate status(s) = comp up

& (EXISTS r: sched time(r,s) <= now(s) + gamma down + beta),
raise: comp gate status(s) = comp down

& (NOT (EXISTS r: sched time(r,s)<= now(s)+gamma up+delta+gamma down)),
up: gate status(s) = going up,
down: gate status(s) = going down

ENDCASES;

trans (a:actions, s:states):states =
CASES a OF
nu(delta t): s WITH [now := now(s) + delta t],
enterR(r): s WITH [basic := basic(s) WITH

[trains part := trains part(basic(s)) WITH [r := P],
comp train status part :=
comp train status part(basic(s)) WITH [r := R],

comp sched time part :=
comp sched time part(basic(s)) WITH
[r := now(s)+eps 1]],

�rst := �rst(s) WITH [(enterI(r)) := now(s)+eps 1],
last := last(s) WITH [(enterI(r)) := now(s)+eps 2]],

enterI(r): s WITH [basic := basic(s) WITH
[trains part := trains part(basic(s)) WITH [r := I]],

�rst := �rst(s) WITH [(enterI(r)) := zero],
last := last(s) WITH [(enterI(r)) := in�nity]],

exit(r): s WITH [basic := basic(s) WITH
[trains part := trains part(basic(s)) WITH [r := not here],
comp train status part :=
comp train status part(basic(s)) WITH [r := comp not here],

comp sched time part :=
comp sched time part(basic(s)) WITH [r := in�nity]]],

lower: IF gate status (s) = fully up OR gate status(s) = going up
THEN s WITH [basic := basic(s) WITH

[gate part := going down,
comp gate status part := comp down],

last := last(s) WITH
[down := now(s) + gamma down, up := in�nity]]

ELSE s ENDIF,

42

raise: IF gate status(s) = fully down OR gate status(s) = going down
THEN s WITH [basic := basic(s) WITH

[gate part := going up,
comp gate status part := comp up],

last := last(s) WITH
[up := now(s) + gamma up, down := in�nity]]

ELSE s ENDIF,
up: s WITH [basic := basic(s) WITH [gate part := fully up],

last := last(s) WITH [up := in�nity]],
down: s WITH [basic := basic(s) WITH [gate part := fully down],

last := last(s) WITH [down := in�nity]]
ENDCASES

enabled (a:actions, s:states):bool = enabled general(a,s) & enabled speci�c(a,s);

start (s:states):bool =
s = (# basic := (# trains part := (LAMBDA r: not here),

gate part := fully up,
comp train status part := (LAMBDA r: comp not here),
comp sched time part := (LAMBDA r: in�nity),
comp gate status part := comp up #),

now := zero,
�rst := (LAMBDA a: zero),
last := (LAMBDA a: in�nity) #)

IMPORTING machine[states, actions, enabled, trans, start]

END systimpl decls

systimpl unique aux: THEORY

BEGIN

IMPORTING systimpl decls

enterR unique: LEMMA (FORALL (r1, r2: train): (enterR(r1) = enterR(r2) => r1 = r2));
enterI unique: LEMMA (FORALL (r1, r2: train): (enterI(r1) = enterI(r2) => r1 = r2));
exit unique: LEMMA (FORALL (r1, r2: train): (exit(r1) = exit(r2) => r1 = r2));
nu unique: LEMMA (FORALL (t1, t2: (�ntime?)): (nu(t1) = nu(t2) => t1 = t2));

END systimpl unique aux

systimpl invariants: THEORY

BEGIN

IMPORTING systimpl unique aux

Inv 5 1 1(s: states):bool = (FORALL (r: train):
(comp status(r,s) = R) IFF (status(r,s) = P OR status(r,s) = I));

lemma 5 1 1: LEMMA (FORALL (s: states): reachable(s) => Inv 5 1 1(s));

Inv 5 1 2(s: states):bool = (FORALL (r: train):
(status(r,s) = P) => (sched time(r,s) = �rst(s)(enterI(r))));

lemma 5 1 2: LEMMA (FORALL (s: states): reachable(s) => Inv 5 1 2(s));

Inv 5 1 3(s: states):bool = (FORALL (r: train):
(comp status(r,s) = R & sched time(r,s) > now(s)) => (status(r,s) = P));

lemma 5 1 3: LEMMA (FORALL (s: states): reachable(s) => Inv 5 1 3(s));

Inv 5 1 4(s:states):bool = (FORALL (r:train): (status(r,s) = I) => (sched time(r,s) <= now(s)));

43

lemma 5 1 4: LEMMA (FORALL (s: states): reachable(s) => Inv 5 1 4(s));

Inv 5 1 5(s: states):bool = (FORALL (r: train):
(NOT (sched time(r,s) = in�nity)) => (status(r,s)=P OR status(r,s)=I));

lemma 5 1 5: LEMMA (FORALL (s: states): reachable(s) => Inv 5 1 5(s));

Inv 5 2 1(s: states):bool =
(comp gate status(s) = comp up
IFF (gate status(s) = fully up OR gate status(s) = going up));

lemma 5 2 1: LEMMA (FORALL (s: states): reachable(s) => Inv 5 2 1(s));

Inv 5 2 2(s: states):bool =
(comp gate status(s) = comp down
IFF (gate status(s) = fully down OR gate status(s) = going down));

lemma 5 2 2: LEMMA (FORALL (s: states): reachable(s) => Inv 5 2 2(s));

Inv B 1 1(s: states):bool = (gate status(s) = going down => last(s)(down) >= now(s));

lemma B 1 1: LEMMA (FORALL (s: states): reachable(s) => Inv B 1 1(s));

Inv B 1 2(s: states):bool = (gate status(s) = going down
=> last(s)(down) <= now(s) + gamma down);

lemma B 1 2: LEMMA (FORALL (s: states): reachable(s) => Inv B 1 2(s));

Inv 6 1(s: states):bool = (FORALL (r: train):
((status(r,s) = P & (gate status(s) = fully up OR gate status(s) = going up))

=> �rst(s)(enterI(r)) > now(s) + gamma down));

lemma 6 1: LEMMA (FORALL (s: states): reachable(s) => Inv 6 1(s));

Inv 6 2(s: states):bool = (FORALL (r: train):
((status(r,s) = P & gate status(s) = going down) => �rst(s)(enterI(r)) > last(s)(down)));

lemma 6 2: LEMMA (FORALL (s: states): reachable(s) => Inv 6 2(s));

Inv 6 3(s: states):bool = ((EXISTS (r: train): status(r,s) = I) => gate status(s) = fully down);

lemma 6 3: LEMMA (FORALL (s: states): reachable(s) => Inv 6 3(s));

Inv 6 3 A(s: states):bool = (FORALL (r: train): status(r,s) = I => gate status(s) = fully down);

lemma 6 3 A: LEMMA (FORALL (s: states): reachable(s) => Inv 6 3 A(s));

END systimpl invariants

systimpl: THEORY

BEGIN

IMPORTING systimpl invariants

END systimpl

44

C Appendix. PVS Strategies for Timed Automata

Below are the de�nitions of the user-de�ned strategies that we have used in our proofs of properties of timed
automata, organized by category. The strategies used in induction proofs have been rather �nely tuned for
e�ciency on our example proofs.

Most of the strategies developed for ad hoc proofs are expected to form parts of higher-level strategies,
once enhancements to PVS permits these strategies to be de�ned. Examples of their current and possible
future use can be found in Appendix E, where we present an annotated ad hoc proof that relies on them.

The strategy �le \pvs-strategies" presented below is divided into nine segments:

Segment 1: Major support strategies used in all induction strategies.

Segment 2: Specialized strategies for the timed automaton Trains.

Segment 3: Specialized strategies for the timed automaton OpSpec.

Segment 4: Specialized strategies for the timed automaton SystImpl.

Segment 5: Specialized simpli�cation strategies for timed automata.

Segment 6: Apply-lemma strategies for timed automata.

Segment 7: General strategies useful in reasoning about atexecs.

Segment 8: A special tcc strategy.

Segment 9: Strategies for the timed auto template version.

That many strategies rely on the form of the template is clear when one compares the strategies in
Segment 9 to their counterparts in Segments 1, 3, and 7. As can be seen from examination of the strategies,
both templates provide standard names for functions to be expanded as parts of strategies. The templates
also guarantee the form of the de�nitions of these functions, and the form of critical lemmas such as \ma-
chine induct" (the basis of the induction strategies). Knowledge of these forms is taken advantage of in
various calls to SPLIT, LIFT-IF, FLATTEN, PROP, and INST. An obvious example is the de�nition of the
strategy time etc simp, where explicit knowledge of the forms of the de�nitions in time thy is used: every
arithmetic operator or predicate is de�ned as an if then else, so, since these operators may occur imbedded
in expressions, expansion of each is followed by a LIFT-IF. A less obvious example is the prop probe strat-
egy in Segment 1, which is used by the induction strategies at the point where the invariant assertion in
the inductive conclusion is instantiated with the state speci�ed in some case of the case statement de�ning
trans. When, as is often the case, this state is speci�ed using an if then else construct, the call to LIFT-IF
transforms the instantiated invariant assertion itself into an if then else construct, which can then be split
by PROP into cases that may be provable by ASSERT.

The strategies presented divide into three categories: those specialized for proof of state invariants that
are independent of timed executions, those designed to support recurring types of reasoning in ad hoc proofs
about timed executions, and those that are useful in either context. The strategies in Segments 1 through 4
(and some of those in Segment 9) are in the �rst category. So far, the only strategies known to be in the last
category are the simpli�cation and apply-lemma strategies in Segments 5 and 6. The strategies in Segment 7
(and their relatives in Segment 9) are in the second category.

The strategies from Segment 7 generally depend on lemmas about admissible timed executions.
The theory containing these lemmas is, in the conventions of our �rst template, the theory
< timed automaton name > strat aux. Certain generic parts of this theory can be included as a sub-
theory of atexecs, say, in a theory atexecs strat aux. However, other parts of this theory involve generic
function names from parts of the template other than atexecs, and so must be included in a theory in
which these function names are known. Using our �rst template, we are constrained to use some sub-theory
of < timed automaton name > for this purpose; using our second template, we can use the generic the-
ory timed auto thy. So far, we have only used these strategy support lemmas to reason about opspec;

45

hence, to simplify matters in using our �rst template, we have grouped all of the strategy support lemmas
in opspec strat aux (see Appendix B.3).

The Segment 7 strategies provide automated support for handling several of the repeating patterns in
proofs about admissible timed executions that were mentioned in Section 6. The strategy normalize atexecs
causes alternative representations of time and state values to be rewritten into a standard form, simplifying
many proofs that two expressions represent the same value. Strategies using lemmas containing standard facts
about reachability and states related by trans can currently be used to retrieve the information relevant to a
certain state or pair of states given the name of the relevant atexecs value alpha and the index of a trajectory
in alpha near the state or states in question. These strategies already help simplify the proof process. For
example, in combination with normalize atexecs, the reachability strategy allows one to simplify the process
of con�rming a particular state is reachable as a prerequisite to applying a state invariant lemma to the
state. Provided su�cient tracking and recognition-by-content of assertions is added to PVS, these strategies
could be re�ned to produce exactly the required information, with minimal user input and no extra clutter
added to a sequent. In fact, it should be possible to use the reachability strategy invisibly to the user as
part of an invariant-lemma strategy.

A �nal note on our strategies: many of them were developed to illustrate feasibility, and require further
polishing. E.g., the use of standard names for skolem constants is a danger, since one must assure non-
duplication of names associated with a given type. One advantage of standard names is that their signi�cance
is also standard. Ideally, automatic generation of these skolem constants will be accompanied by some
method of tracking their signi�cance. This might be done through an interface to PVS. There is another
naming problem as well. When two or more automaton theories are being reasoned about simultaneously,
the standard names of template operators will have more than one instantiation. For the strategies to work
in such a situation, they will have to use the correct instantiations of these operators when they are invoked.
The best way to obtain the information needed to determine these instantiations needs to be determined.

; *** Section 1 ***
; *** Major support strategies used in all induction strategies. ***

(defstep auto cases (inv)
(then* (lemma \machine induct")

(expand \inductthm")
(inst �1 inv)
(split))

\" \Splitting into machine base and induction cases")

(defstep base case (inv)
(then* (delete 2)

(expand \base")
(skolem 1 \s 1")
(atten)
(expand \start")
(expand inv))

\" \Simplifying the machine base case")

(defstep induct cases (inv)
(let ((x (format nil \

e

a
e

a
e

a
e

a
e

a"
\(LAMBDA (a: actions): (FORALL (s: states): reachable(s) & "
inv
\(s) & enabled(a,s) => "
inv
\(trans(a,s))))")))

(then* (delete 2)
(expand \inductstep")
(lemma \actions induction")
(inst �1 x)

46

(beta)
(branch (split)

((then* (skolem 1 (\s 1" \a 1"))(inst �1 \a 1")(inst �1 \s 1"))
(skip)))))

\" \Splitting the induction case on action class")

(defstep reduce case one var exp (inv var1)
(then* (delete 2)

(skolem 1 (var1))
(skolem 1 (\s 1"))
(atten)
(expand \enabled")
(expand \trans")
(expand inv))

\" \Applying the standard simpli�cation")

(defstep reduce case no var exp (inv)
(then* (delete 2)

(skolem 1 (\s 1"))
(atten)
(expand \enabled")
(expand \trans")
(expand inv))

\" \Applying the standard simpli�cation")

; The strategy reduce case no var rew is just like reduce case no var exp except that it calls rewrite
; instead of expand on trans in order to avoid doing the lift-if included in an expand that spoils the matching
; of universally quanti�ed formulae in inductive hypothesis and conclusion. The choice of strategy is made
; according to whether there is an IF-THEN-ELSE at the top level of the de�nition for the corresponding
; case in the de�nition of trans. The use of rewrite on expand as well is the result of experiment showing
; it to be more e�cient in this case.

(defstep reduce case no var rew (inv)
(then* (delete 2)

(skolem 1 (\s 1"))
(atten)
(rewrite \enabled")
(rewrite \trans")
(expand inv))

\" \Applying the standard simpli�cation")

; The strategy prop probe is used to test whether the remainder of a proof is \trivial". It is part of
; several other \ probe" strategies.

(defstep prop probe ()
(then* (lift-if)

(prop)
(assert)
(fail))

\" \")

; *** Section 2 ***
; *** Specialized strategies for the timed automaton trains. ***

(defstep auto proof trains (inv)
(then (branch (auto cases inv)

((then (base case inv)(trains simp probe)(postpone))
(branch (induct cases inv)

47

((then (reduce case one var exp inv \t 1")
(trains simp probe)(postpone))

(then (reduce case one var exp inv \r 1")
(trains simp probe)(postpone))

(then (reduce case one var exp inv \r 1")
(trains simp probe)(postpone))

(then (reduce case one var exp inv \r 1")
(trains simp probe)(postpone)))))))

\" \Taking care of the standard steps in the proof")

(defstep auto proof univ trains (inv)
(then (branch (auto cases inv)

(then (base case inv)(trains simp probe)(postpone))
(branch (induct cases inv)

((then (reduce case one var exp inv \t 1")
(match univ and trains simp probe)
(postpone))

(then (reduce case one var exp inv \r 1")
(match univ and trains simp probe)
(postpone))

(then (reduce case one var exp inv \r 1")
(match univ and trains simp probe)
(postpone))

(then (reduce case one var exp inv \r 1")
(match univ and trains simp probe)
(postpone)))))))

\" \Taking care of the standard steps in the proof")

(defstep trains simp ()
(then* (expand \OKstate?")

(expand \status")
(atten))

\" \Expanding some trains de�nitions")

(defstep trains simp probe ()
(then (trains simp) (prop probe))
\" \")

(defstep match univ and trains simp probe ()
(then (skolem 1 \r 2") (inst �2 \r 2") (trains simp probe))
\" \")

; *** Section 3 ***
; *** Specialized strategies for the timed automaton opspec. ***

; The auto proof strategies are the induction strategies.

(defstep auto proof opspec (inv)
(then (branch (auto cases inv)

(then (base case inv)(opspec simp probe)(postpone))
(branch (induct cases inv)

((then (reduce case one var exp inv \t 1")
(opspec simp probe)(postpone))

(then (reduce case one var exp inv \r 1")
(opspec simp probe)(postpone))

(then (reduce case one var exp inv \r 1")
(opspec simp probe)(postpone))

48

(then (reduce case one var exp inv \r 1")
(opspec simp probe)(postpone))

(then (reduce case no var exp inv)
(opspec simp probe)(postpone))

(then (reduce case no var exp inv)
(opspec simp probe)(postpone))

(then (reduce case no var exp inv)
(opspec simp probe)(postpone))

(then (reduce case no var exp inv)
(opspec simp probe)(postpone)))))))

\" \Taking care of the standard steps in the proof")

(defstep opspec simp ()
(then* (expand \OKstate?")

(expand \last 1")
(expand \last 2 up")
(expand \last 2 I")
(expand \status")
(expand \gate status")
(atten))

\" \Expanding some opspec de�nitions")

(defstep opspec simp probe ()
(then (opspec simp) (prop probe))
\" \")

; The strategy do trans opspec expands and simpli�es a state of opspec that is represented by a trans
; expression, and reasons about the result. Because trans is usually de�ned by a case expression, it is
; not unusual for branching to occur. It is typical for the expected number of branches to be small when
; do trans opspec is an appropriate proof step.

(defstep do trans opspec ()
(then (expand \trans")(opspec simp)(lift-if)(assert)(assert))
\" \")

; *** Section 4 ***
; *** Specialized strategies for the timed automaton systimpl. ***

; The auto proof strategies are the induction strategies.

(defstep auto proof systimpl (inv)
(then (branch (auto cases inv)

(then (base case inv)(systimpl simp probe)(postpone))
(branch (induct cases inv)

((then (reduce case one var exp inv \t 1")
(systimpl simp probe)(postpone))

(then (reduce case one var exp inv \r 1")
(systimpl simp probe)(postpone))

(then (reduce case one var exp inv \r 1")
(systimpl simp probe)(postpone))

(then (reduce case one var exp inv \r 1")
(systimpl simp probe)(postpone))

(then (reduce case no var exp inv)
(systimpl simp probe)(postpone))

(then (reduce case no var exp inv)
(systimpl simp probe)(postpone))

(then (reduce case no var exp inv)

49

(systimpl simp probe)(postpone))
(then (reduce case no var exp inv)

(systimpl simp probe)(postpone)))))))
\" \Taking care of the standard steps in the induction proof")

(defstep auto proof univ systimpl (inv)
(then (branch (auto cases inv)

(then (base case inv)(systimpl simp probe)(postpone))
(branch (induct cases inv)

((then (reduce case one var exp inv \t 1")
(match univ and systimpl simp probe)
(postpone))

(then (reduce case one var exp inv \r 1")
(match univ and systimpl simp probe)
(postpone))

(then (reduce case one var exp inv \r 1")
(match univ and systimpl simp probe)
(postpone))

(then (reduce case one var exp inv \r 1")
(match univ and systimpl simp probe)
(postpone))

(then (reduce case no var rew inv)
(match univ and systimpl simp probe)
(postpone))

(then (reduce case no var rew inv)
(match univ and systimpl simp probe)
(postpone))

(then (reduce case no var exp inv)
(match univ and systimpl simp probe)
(postpone))

(then (reduce case no var exp inv)
(match univ and systimpl simp probe)
(postpone)))))))

\" \Taking care of the standard steps in the induction proof")

(defstep systimpl simp ()
(then* (expand \OKstate?")

(expand \beta")
(expand \comp status")
(expand \comp gate status")
(expand \sched time")
(expand \status")
(expand \gate status")
(atten))

\" \Expanding some systimpl de�nitions")

(defstep systimpl simp probe ()
(then (systimpl simp) (prop probe))
\" \")

(defstep match univ and systimpl simp probe ()
(then (skolem 1 \r 2") (inst �2 \r 2") (systimpl simp probe))
\" \")

(defstep direct proof univ systimpl (inv)
(then* (skolem 1 \s 1")

50

(expand inv)
(atten)
(skolem 1 \r 1")
(systimpl simp))

\" \Doing the standard steps of a non-induction proof")

; *** Section 5 ***
; *** Specialized simpli�cation strategies for timed automata. ***

; Simpli�cation strategies that handle time de�nitions and other simple types of reasoning needed for
; timed automata.

(defstep time etc simp ()
(then* (lift-if)

(prop)
(assert)
(expand \<=")
(lift-if)
(expand \>=")
(lift-if)
(expand \<")
(lift-if)
(expand \>")
(lift-if)
(expand \+")
(lift-if)
(expand \�")
(lift-if)
(repeat* (then* (assert) (prop) (lift-if))))

\" \Doing time-arithmetic")

; The strategy time etc simp probe tries time etc simp and backtracks if it does not succeed.

(defstep time etc simp probe ()
(then* (lift-if)

(prop)
(assert)
(expand \<=")
(lift-if)
(expand \>=")
(lift-if)
(expand \<")
(lift-if)
(expand \>")
(lift-if)
(expand \+")
(lift-if)
(expand \�")
(lift-if)
(repeat* (then* (assert) (prop) (lift-if)))
(fail))

\" \Doing time-arithmetic")

; The strategy time simp focusses time etc simp on a single formula in a sequent.

(defstep time simp (fnum)
(then* (lift-if fnum)

51

(my prop fnum)
(assert)
(expand \<=" fnum)
(lift-if fnum)
(expand \>=" fnum)
(lift-if fnum)
(expand \<" fnum)
(lift-if fnum)
(expand \>" fnum)
(lift-if fnum)
(expand \+" fnum)
(lift-if fnum)
(expand \�" fnum)
(lift-if fnum)
(repeat* (then* (assert) (my prop fnum) (lift-if fnum))))

\" \Doing time-arithmetic on a particular formula")

; The strategy my prop focusses the standard strategy prop on a single formula in a sequent.

(defstep my prop (fnum)
(try (atten fnum) (my prop fnum) (try (split fnum) (my prop fnum)(skip)))
\" \")

; The following shorter version of time etc simp was provided by Shankar at SRI. It is equivalent in power
; to time etc simp, but testing has shown that while it is sometimes equally fast, it is sometimes several
; seconds slower.

(defstep time etc simp shankar ()
(then (stop-rewrite)

(auto-rewrite-theory \time thy")
(repeat* (then (lift-if)(ground))))

\" \Doing time-arithmetic")

; *** Section 6 ***
; *** Apply-lemma strategies for timed automata. ***

; Some of the apply-lemma strategies are specialized for application of state invariant lemmas.

(defstep apply lemma (lem args)
(let ((x (cons 'inst (cons �1 args))))
(then (lemma lem) x))
\" \Applying a lemma to some arguments")

(defstep apply inv lemma (invno &optional statevar)
(let ((lemma name (format nil \

e

a
e

a" \lemma " invno))
(theorem name (format nil \

e

a
e

a" \lemma " invno))
(inv name (format nil \

e

a
e

a" \Inv " invno))
(state (cond (statevar) (t \s 1"))))

(then* (try (apply lemma lemma name (state)) (skip)
(apply lemma theorem name (state)))

(assert)
(expand inv name)))

\" \Applying the appropriate invariant lemma")

(defstep apply univ inv lemma (invno quantvar &optional statevar)
(let ((lemma name (format nil \

e

a
e

a" \lemma " invno))
(theorem name (format nil \

e

a
e

a" \lemma " invno))
(inv name (format nil \

e

a
e

a" \Inv " invno))

52

(state (cond (statevar) (t \s 1"))))
(then* (try (apply lemma lemma name (state)) (skip)

(apply lemma theorem name (state)))
(assert)
(expand inv name)
(inst �1 quantvar)))

\" \Applying the appropriate invariant lemma")

; *** Section 7 ***
; *** General strategies useful in reasoning about atexecs. ***

; The strategy put glb �nds the time index of the last indexed time in an atexec that is less than or equal
; to the particular non-negative-real valued bound \timebound", and gives it an associated name.

(defstep put glb (atexec timebound)
(let ((x (format nil \

e

a
e

a" timebound \ glb"))
(y timebound)
(z atexec))
(put glb 2 x y z))

\" \")

(defstep put glb 2 (boundname timebound atexec)
(let ((x (list atexec timebound))

(y (list boundname)))
(then (apply lemma \glb fact" x) (skolem �1 y) (atten)))
\" \")

; The strategy get reachables adduces the fact of reachability for states in an atexec near time index \index",
; under various aliases.

(defstep get reachables (atexec index)
(let ((x (list atexec index)))

(then (apply lemma \reachable states" x) (atten)))
\" \")

; The strategy trans facts adduces the relatedness of states, under various aliases, via a transition in an
; atexec near time index \index".

(defstep trans facts (atexec index)
(let ((x (list atexec index)))

(then (apply lemma \trans facts" x)
(atten) (assert) (atten)))

\" \")

; The strategy normalize atexecs converts all time points and state points of an admissible timed execution
; to a normal form, so that equalities may be inferred.

(defstep normalize atexecs ()
(then (auto-rewrite-theory \opspec strat aux")

(apply (do-rewrite)))
\" \")

; The strategy time order is used to infer an inequality between time indices from the same inequality
; between the indexed times.

(defstep time order (atexec n1 n2)
(let ((x (list atexec n1 n2)))

(then (apply lemma \time relation" x) (atten) (simplify)))
\" \")

53

; The strategy match condition is used to simplify reasoning about an IF-THEN-ELSE assertion. It can
; sometimes circumvent splitting; when it does not, it can make the result of splitting more \natural".

(defstep match condition (fnum)
(then (split fnum) (atten) (assert))
\" \Attempting to eliminate a condition")

; The strategy modus ponens is used to avoid splitting an assertion having a complex hypothesis identical
; to another assertion present.

(defstep modus ponens (fnum)
(branch (split fnum) ((skip) (assert)))
\" \Attempting to eliminate an hypothesis")

; *** Section 8 ***
; *** A special tcc strategy. ***

; A strategy useful in proving the tccs for the lemmas about admissible timed traces used to support
; normalize atexecs:

(defstep same states tcc (atexec leftend rightend)
(let ((timeseq (format nil \

e

a
e

a
e

a" \t(" atexec \)"))
(trajseq (format nil \

e

a
e

a
e

a" \w(" atexec \)")))
(then (skosimp)

(expand \interval")
(apply (then (typepred atexec) (hide �1 �3 �4) (inst-cp �1 leftend)

(inst �1 rightend)))
(apply (then (typepred timeseq) (hide �1) (inst �1 leftend rightend)))
(apply (then (typepred trajseq) (inst �1 leftend)))
(expand \ltime")
(assert)))

\" \")

; *** Section 9 ***
; *** Strategies for the timed auto template version. ***

(defstep auto proof opspec timed auto (inv)
(then (branch (time (auto cases inv))

(then (base case timed auto inv)(opspec simp probe)(postpone))
(branch (induct cases inv)

((then (reduce case timed auto one var exp inv \t 1")
(opspec simp probe)(postpone))

(then (reduce case timed auto one var exp inv \r 1")
(opspec simp probe)(postpone))

(then (reduce case timed auto one var exp inv \r 1")
(opspec simp probe)(postpone))

(then (reduce case timed auto one var exp inv \r 1")
(opspec simp probe)(postpone))

(then (reduce case timed auto no var exp inv)
(opspec simp probe)(postpone))

(then (reduce case timed auto no var exp inv)
(opspec simp probe)(postpone))

(then (reduce case timed auto no var exp inv)
(opspec simp probe)(postpone))

(then (reduce case timed auto no var exp inv)
(opspec simp probe)(postpone)))))))

\" \Taking care of the standard steps in the proof")

54

(defstep base case timed auto (inv)
(then* (delete 2)

(expand \base")
(skolem 1 \s 1")
(atten)
(expand \start")
(atten)
(expand \basic start")
(expand inv))

\" \Simplifying the auto base case")

(defstep reduce case timed auto one var exp (inv var1)
(then* (delete 2)

(skolem 1 (var1))
(skolem 1 (\s 1"))
(atten)
(expand \enabled")
(expand \trans")
(expand \basic trans")
(expand inv))

\" \Applying the standard simpli�cation")

(defstep reduce case timed auto no var rew (inv)
(then* (delete 2)

(skolem 1 (\s 1"))
(atten)
(rewrite \enabled")
(rewrite \trans")
(expand \basic trans")
(expand inv))

\" \Applying the standard simpli�cation")

(defstep reduce case timed auto no var exp (inv)
(then* (delete 2)

(skolem 1 (\s 1"))
(atten)
(expand \enabled")
(expand \trans")
(expand \basic trans")
(expand inv))

\" \Applying the standard simpli�cation")

(defstep normalize atexecs timed auto ()
(then (auto-rewrite-theory

\timed auto thy [basic states, actions, nu, nu?, timeof, basic start,
�rst start, last start, basic trans, �rst trans,
basic trans, enabled speci�c, OKstate?]")

(apply (do-rewrite)))
\" \")

(defstep do trans opspec timed auto ()
(then (expand \trans")

(expand \basic trans")(expand \�rst trans")(expand \last trans")
(opspec simp)(lift-if)(assert)(assert))

\" \")

55

D Appendix. PVS Proofs of State Invariants

In this Appendix, we present our PVS proofs of all the state invariants that we have proved for our timed
automata models. With the exceptions noted, these proofs all follow this standard script:

� If the proof is an induction proof, apply the appropriate induction strategy; otherwise, apply the appro-
priate direct-proof strategy.

� For each generated subgoal, introduce the facts and case splits appealed to in the hand proof. The facts
appealed to may be the transition precondition (if the subgoal is an action case in the induction proof),
axioms about constants in the automaton de�nition, applications of invariant lemmas, or applications of
other lemmas.

� Attempt to complete the proof with an appeal to the strategy TIME ETC SIMP.

� In cases where this fails|often, these are cases dismissed as trivial in the hand proof|appeal to one of the
following: the precondition, an appropriate uniqueness lemma, or facts about the constants associated
with the timed automaton. Then again call TIME ETC SIMP.

Below is the proof of the single state invariant for the timed automaton Trains. It follows the standard
script.

trains invariants.lemma 3 1:

(\" (AUTO PROOF UNIV TRAINS \Inv 3 1")
((\1" (APPLY (TIME ETC SIMP) \Case enterR(r 1)."))
(\2" (APPLY (THEN (APPLY LEMMA \enterI unique" (\r 1" \r 2")) (TRAINS SIMP))

\Case enterI(r 1).")
(TIME ETC SIMP))))

Below are the proofs of the seven state invariants for the timed automaton OpSpec. All of these proofs
follow the standard script.

opspec invariants.lemma 4 1 1:

(\" (AUTO PROOF OPSPEC \Inv 4 1 1"))

opspec invariants.lemma 4 1 2:

(\" (AUTO PROOF OPSPEC \Inv 4 1 2")
((\1" (APPLY (TIME ETC SIMP) \Base case." \In�nity plus �nite equals in�nity."))
(\2" (APPLY (TIME ETC SIMP) \Case enterI(r 1)." \In�nity plus �nite equals in�nity."))
(\3" (APPLY (TIME ETC SIMP) \Case up." \In�nity plus �nite equals in�nity."))))

opspec invariants.lemma 4 2 1:

(\" (AUTO PROOF OPSPEC \Inv 4 2 1")
((\1" (APPLY (TIME ETC SIMP) \Base case." \zero <= in�nity."))
(\2" (APPLY (THEN (EXPAND \enabled speci�c") (OPSPEC SIMP)) \Case nu(t 1)."))
(\3" (APPLY (TIME ETC SIMP) \Case enterI(r 1)." \�nite <= in�nity."))
(\4" (APPLY (TIME ETC SIMP) \Case lower." \a <= a + b."))))

opspec invariants.lemma 4 2 2:

(\" (AUTO PROOF OPSPEC \Inv 4 2 2")
((\1" (APPLY (TIME ETC SIMP) \Base case." \Finite <= in�nity."))

56

(\2" (APPLY (THEN (EXPAND \enabled speci�c") (OPSPEC SIMP)) \Case nu(t 1)."))
(\3" (APPLY (TIME ETC SIMP) \Case enterI(r 1)." \Finite <= in�nity."))
(\4" (APPLY (TIME ETC SIMP) \Case exit." \a <= a + b + c + d."))
(\5" (APPLY (TIME ETC SIMP) \Case up." \Finite <= in�nity."))))

opspec invariants.lemma 4 2 3:

(\" (AUTO PROOF OPSPEC \Inv 4 2 3")
((\1" (APPLY (TIME ETC SIMP) \Case nu(t 1)." \Finite <= in�nity."))
(\2" (APPLY (TIME ETC SIMP) \Case lower." \a <= a."))))

opspec invariants.lemma 4 2 4:

(\" (AUTO PROOF OPSPEC \Inv 4 2 4")
((\1" (APPLY (TIME ETC SIMP) \Case nu(t 1)." \Finite <= in�nity."))
(\2" (APPLY (TIME ETC SIMP) \Case exit(r 1)." \a <= a."))))

opspec invariants.lemma 4 2 5:

(\" (AUTO PROOF OPSPEC \Inv 4 2 5")
((\1" (APPLY (TIME ETC SIMP) \Case nu(t 1)." \a <= b + c implies a <= b + d + c."))
(\2" (APPLY (TIME ETC SIMP) \Case exit(r 1)." \a <= a."))))

Below are the proofs of the thirteen invariant lemmas of the timed automaton SystImpl. The ones whose
proofs di�er from the standard script are lemma 6 1 and lemma 6 3.

The major di�erences in lemma 6 3, which is logically equivalent to lemma 6 3 A, result from the fact
that it is formulated with an imbedded existential quanti�er rather than a top-level universal quanti�er,
making it di�cult to predict how to match skolemization and instantiation in the induction steps. The
di�erences in lemma 6 1 consist of uses of MODUS PONENS, ASSERT, and INST. MODUS PONENS is
used to eliminate from some implication-assertions their hypotheses that would have been eliminated by
the calls to ASSERT in the apply-invariant-lemma strategies if they had been simpler in form. The call
to ASSERT then eliminates another hypothesis that was the conclusion of one of the original implication-
assertions; combining it with INST accomplishes the required instantiation of part of the precondition of the
action nu(t 1).

With appropriate enhancements to PVS, these deviations from the standard script can be eliminated,
except possibly for the \appropriate instantiation of the precondition"; whether this step can be automated
as part of a general apply-the-precondition strategy remains to be determined.

systimpl invariants.lemma 5 1 1:

(\" (AUTO PROOF UNIV SYSTIMPL \Inv 5 1 1")
((\1" (APPLY (TIME ETC SIMP) \Base case."

\Retrieving function defs from state s 1 and doing beta reduction."))
(\2" (APPLY (THEN (EXPAND \enabled speci�c") (SYSTIMPL SIMP)) \Case enterI(r 1).")

(TIME ETC SIMP))))

systimpl invariants.lemma 5 1 2:

(\" (AUTO PROOF UNIV SYSTIMPL \Inv 5 1 2")
((\1" (APPLY (APPLY LEMMA \enterI unique" (\r 1" \r 2")) \Case enterR(r 1)).")

(TIME ETC SIMP))
(\2" (APPLY (APPLY LEMMA \enterI unique" (\r 1" \r 2")) \Case enterI(r 1).")

(TIME ETC SIMP))))

57

systimpl invariants.lemma 5 1 3:

(\" (AUTO PROOF UNIV SYSTIMPL \Inv 5 1 3")
((\1" (APPLY (TIME ETC SIMP) \Case nu(t 1)." \a > b + c implies a > b."))
(\2" (APPLY (THEN (EXPAND \enabled speci�c") (SYSTIMPL SIMP)) \Case enterI(r 1).")

(APPLY (THEN (APPLY UNIV INV LEMMA \5 1 2" \r 1") (SYSTIMPL SIMP)))
(APPLY (TIME ETC SIMP) \Doing obvious case-based reasoning."))))

systimpl invariants.lemma 5 1 4:

(\" (DIRECT PROOF UNIV SYSTIMPL \Inv 5 1 4")
(APPLY (THEN (APPLY UNIV INV LEMMA \5 1 1" \r 1") (SYSTIMPL SIMP)))
(APPLY (THEN (APPLY UNIV INV LEMMA \5 1 3" \r 1") (SYSTIMPL SIMP)))
(TIME ETC SIMP))

systimpl invariants.lemma 5 1 5:

(\" (AUTO PROOF UNIV SYSTIMPL \Inv 5 1 5"))

systimpl invariants.lemma 5 2 1:

(\" (AUTO PROOF SYSTIMPL \Inv 5 2 1")
((\1" (APPLY (THEN (EXPAND \enabled speci�c") (SYSTIMPL SIMP)) \Case up.")

(TIME ETC SIMP))
(\2" (APPLY (THEN (EXPAND \enabled speci�c") (SYSTIMPL SIMP)) \Case down.")

(TIME ETC SIMP))))

systimpl invariants.lemma 5 2 2:

(\" (DIRECT PROOF UNIV SYSTIMPL \Inv 5 2 2")
(APPLY (THEN (APPLY INV LEMMA \5 2 1") (SYSTIMPL SIMP)))
(TIME ETC SIMP))

systimpl invariants.lemma B 1 1:

(\" (AUTO PROOF SYSTIMPL \Inv B 1 1")
((\1" (APPLY (THEN (EXPAND \enabled speci�c") (SYSTIMPL SIMP)) \Case nu(t 1).")

(APPLY (HIDE �5 �8 �9) \Hiding quanti�ed formulae before using (time etc simp).")
(APPLY (TIME ETC SIMP) \Doing time-arithmetic: reversing an inequality."))

(\2" (APPLY (TIME ETC SIMP) \Case lower."
\Doing propositional reasoning plus time arithmetic."))))

systimpl invariants.lemma B 1 2:

(\" (AUTO PROOF SYSTIMPL \Inv B 1 2")
((\1" (APPLY (TIME ETC SIMP) \Case nu(t 1)."))
(\2" (APPLY (TIME ETC SIMP) \Case lower."))))

systimpl invariants.lemma 6 1:

(\" (AUTO PROOF UNIV SYSTIMPL \Inv 6 1")
((\1" (APPLY (THEN (EXPAND \enabled speci�c") (SYSTIMPL SIMP))

\Case nu(t 1). Invoke the precondition.")
(APPLY (THEN (APPLY INV LEMMA \5 2 1") (SYSTIMPL SIMP)))

58

(APPLY (THEN (APPLY UNIV INV LEMMA \5 1 2" \r 2") (SYSTIMPL SIMP)))
(MODUS PONENS �3)
(MODUS PONENS �5)
(ASSERT)
(INST �11 \r 2")
(APPLY (HIDE �8) \Hiding quanti�ed formulas.")
(TIME ETC SIMP))

(\2" (APPLY (THEN (APPLY LEMMA \const facts" NIL)
(APPLY LEMMA \enterI unique" (\r 1" \r 2")))

\Case enterR(r 1). Appeal to some standard facts.")
(APPLY (TIME ETC SIMP) \Combine some propositional and time-arithmetic reasoning."))

(\3" (APPLY (APPLY LEMMA \enterI unique" (\r 1" \r 2"))
\Case enterI(r 1). Appeal to some standard facts.")

(TIME ETC SIMP))
(\4" (APPLY (THEN (EXPAND \enabled speci�c") (SYSTIMPL SIMP))

\Case raise. Invoke the precondition.")
(INST 1 \r 2")
(APPLY (THEN (APPLY UNIV INV LEMMA \5 1 2" \r 2") (SYSTIMPL SIMP)))
(TIME ETC SIMP))

(\5" (APPLY (THEN (EXPAND \enabled speci�c") (SYSTIMPL SIMP))
\Case up. Invoke the precondition.")

(APPLY (TIME ETC SIMP) \Applying simple propositional reasoning."))))

systimpl invariants.lemma 6 2:

(\" (AUTO PROOF UNIV SYSTIMPL \Inv 6 2")
((\1" (APPLY (THEN (APPLY INV LEMMA \B 1 2") (SYSTIMPL SIMP)) \Case enterR(r 1).")

(APPLY (APPLY LEMMA \const facts" NIL) \Appealing to some standard facts.")
(APPLY (TIME ETC SIMP) \Combining reasoning about cases and time arithmetic."))

(\2" (APPLY (APPLY LEMMA \enterI unique" (\r 1" \r 2")) \Case enterI(r 1)."
\Appealing to a standard fact.")

(APPLY (TIME ETC SIMP) \Doing some propositional reasoning."))
(\3" (APPLY (THEN (APPLY UNIV INV LEMMA \6 1" \r 2") (SYSTIMPL SIMP))

\Case lower." \Apply invariant lemma 6 1.")
(APPLY (TIME ETC SIMP) \Doing propositional reasoning by cases."))))

systimpl invariants.lemma 6 3:

(\" (APPLY (AUTO PROOF SYSTIMPL \Inv 6 3") \Use induction.")
((\1" (APPLY (TIME ETC SIMP) \Case enterR(r 1)."

\Prepare sequent for matched SKOLEM and INST.")
(APPLY (THEN (SKOLEM �4 \r 2") (INST 1 \r 2")) \Setting r = r 2.")
(APPLY (TIME ETC SIMP) \Con�rm that this case is trivial."))

(\2" (APPLY (TIME ETC SIMP) \Case enterI(r 1)."
\Prepare sequent for matched SKOLEM and INST.")

(APPLY (THEN (SKOLEM �4 \r 2") (INST 1 \r 2")) \Setting r = r 2.")
(APPLY (THEN (EXPAND \enabled speci�c") (SYSTIMPL SIMP))

\Invoke the precondition.")
(CASE \gate status(s 1) = fully up or gate status(s 1) = going up")
((\1" (APPLY (THEN (APPLY UNIV INV LEMMA \6 1" \r 1") (SYSTIMPL SIMP))

\Invoke the invariant lemma 6 1.")
(APPLY (TIME ETC SIMP) \Derive contradiction with the precondition."))

(\2" (APPLY (THEN (APPLY UNIV INV LEMMA \6 2" \r 1") (SYSTIMPL SIMP))
\Invoke the invariant lemma 6 2.")

59

(APPLY (THEN (APPLY INV LEMMA \B 1 1") (SYSTIMPL SIMP))
\Invoke the invariant lemma B 1, part 1.")

(APPLY (TIME ETC SIMP) \Derive contradiction with the precondition."))))
(\3" (APPLY (TIME ETC SIMP) \Case exit(r 1)."

\Prepare sequent for matched SKOLEM and INST.")
(APPLY (THEN (SKOLEM �4 \r 2") (INST 1 \r 2")) \Setting r = r 2.")
(APPLY (TIME ETC SIMP) \Con�rm that this case is trivial."))

(\4" (APPLY (TIME ETC SIMP) \Case raise.")
(APPLY (THEN (SKOLEM �5 \r 2"))

\Matching formula for INST was eliminated. Setting r = r 2.")
(APPLY (THEN (EXPAND \enabled speci�c") (SYSTIMPL SIMP) (INST 1 \r 2"))

\Invoke and specialize the pre-condition.")
(APPLY (THEN (APPLY UNIV INV LEMMA \5 1 1" \r 2") (SYSTIMPL SIMP))

\Invoke invariant lemma 5 1, part 1.")
(APPLY (THEN (APPLY UNIV INV LEMMA \5 1 3" \r 2") (SYSTIMPL SIMP))

\Invoke invariant lemma 5 1, part 3.")
(APPLY (TIME ETC SIMP) \Derive contradiction."))

(\5" (APPLY (THEN (EXPAND \enabled speci�c") (SYSTIMPL SIMP))
\Case up. Invoke the precondition.")

(APPLY (TIME ETC SIMP) \Derive contradiction with the precondition."))))

systimpl invariants.lemma 6 3 A:

(\" (APPLY (AUTO PROOF UNIV SYSTIMPL \Inv 6 3 A") \Use induction. Fix r = r 2.")
((\1" (APPLY (THEN (EXPAND \enabled speci�c") (SYSTIMPL SIMP))

\Case enterI(r 1). Invoke the precondition.")
(CASE \gate status(s 1) = fully up OR gate status(s 1) = going up")
((\1" (APPLY (THEN (APPLY UNIV INV LEMMA \6 1" \r 1") (SYSTIMPL SIMP))

\Invoke the invariant lemma 6 1.")
(APPLY (TIME ETC SIMP) \Derive contradiction with the precondition."))

(\2" (APPLY (THEN (APPLY UNIV INV LEMMA \6 2" \r 1") (SYSTIMPL SIMP))
\Invoke the invariant lemma 6 2.")

(APPLY (THEN (APPLY INV LEMMA \B 1 1") (SYSTIMPL SIMP))
\Invoke invariant lemma B 1, part 1.")

(APPLY (TIME ETC SIMP) \Derive contradiction with the precondition."))))
(\2" (APPLY (THEN (EXPAND \enabled speci�c") (SYSTIMPL SIMP) (INST 1 \r 2"))

\Case raise. Invoke and specialize the precondition.")
(APPLY (THEN (APPLY UNIV INV LEMMA \5 1 1" \r 2") (SYSTIMPL SIMP))

\Invoke invariant lemma 5 1, part 1.")
(APPLY (THEN (APPLY UNIV INV LEMMA \5 1 3" \r 2") (SYSTIMPL SIMP))

\Invoke invariant lemma 5 1, part 3.")
(APPLY (TIME ETC SIMP) \Derive contradiction."))

(\3" (APPLY (THEN (EXPAND \enabled speci�c") (SYSTIMPL SIMP))
\Case up. Invoke the precondition.")

(APPLY (TIME ETC SIMP) \Derive contradiction with the precondition."))))

60

E Appendix. Lessons from the PVS Proof of Lemma E.1

In the �rst section of this Appendix, we present the statement of Lemma E.1 from Appendix B.3 of [12],
and its proof in PVS, annotated by an equivalent interleaved English language proof. The PVS proof was
developed as follows: First, an attempt was made to follow the hand proof in [12] as closely as possible.
Many missing details needed for the PVS prover were incorporated in this proof, resulting in a PVS proof
running to over 6 pages, not counting comments. Strategies were designed to abbreviate many of the repeated
sequences in reasoning; these sequences were identi�ed by the purpose they served, and were therefore not
always precisely syntactically isomorphic. The proof was then redone using the new strategies to replace
longer sequences. At this stage, the structure of the PVS proof became much clearer, and it was possible to
eliminate duplicated e�orts and simply wasteful steps. Comments were incorporated with the proof steps to
help clarify this structure. The resulting PVS proof was then annotated in fuller detail in English.

Note that this is not the method by which we expect other ad hoc timed automaton proofs in PVS to be
developed. One result of our study of such proofs should be the identi�cation of parts of English language
proofs that need additional detail to be added when translated for the automatic prover, as well as the type
of additional detail they need. With this knowledge, a hand proof can be expanded to a more detailed one
more suitable for straightforward translation. Used in combination with the more sophisticated large step
strategies whose development will become possible when appropriate enhancements are added to PVS, this
approach can bring us closer to the ideal of mimicking a natural hand proof in PVS. The addition to PVS
of a facility for attaching comments to goals rather than proof steps will also aid in the documentation of
the correspondence between natural language proof and PVS proof.

Included among our annotations of the Lemma E.1 proof are indications of step sequences that have the
potential of being replaced by calls to large step strategies supported by PVS enhancements. These sequences
are denoted by asterisks along the right margin, with number tags in the form (m.n), where m denotes the
m-th potential strategy, and n denotes the n-th place where this strategy could be used. The second section
of this Appendix describes the desired e�ects and possible implementations of these strategies, and shows
for each potential use just how the strategy might be invoked.

E.1 The PVS Proof of Lemma E.1 with Annotations

; Lemma E 1: Let alpha be an admissible timed execution of OpSpec. Let Pi be any lower event
; occurring in alpha from a state in which Gate.status is in fgoing-up, upg. Then there is an enterI
; event Phi occurring after Pi in alpha, with time(Phi) <= time(Pi) + xi 1.

(\"

; Let A 1 be an atexec of OpSpec and n 1 be the index of the action Pi = pi(A 1)(n 1), which occurs
; from the state lstate(w(A 1)(n 1 � 1)) in which the gate is either going up or fully up.

(SKOLEM 1 \A 1")
(SKOLEM 1 \n 1")
(FLATTEN)

; For convenience, we will call the state just before Pi, namely lstate(w(A 1)(n 1 � 1)), s 1, and the
; state after Pi, namely fstate(w(A 1)(n 1)), s 2.

(APPLY (THEN (NAME \s 1" \lstate(w(A 1)(n 1 � 1))")
(NAME \s 2" \fstate(w(A 1)(n 1))"))

\Give names s 1 and s 2 to the states just before and after Pi.")

; Supposition 1: The time of Pi, t(A 1)(n 1), equals now(s 1) and now(s 2).

(APPLY (CASE \now(s 2) = now(s 1) & Now(s 1) = t(A 1)(n 1)")
\Assume the time equivalences from the �rst sentence of the hand
proof. The proof of these facts below depends mainly on
normalize atexecs.")

((\1"

61

; Supposition 2: last 1(s 2) <= now(s 2) + xi 1.

(APPLY (CASE \last 1(s 2) <= now(s 2) + xi 1")
\Assume the inequality that concludes the �rst paragraph of the
hand proof. It will be proved later below.")

((\1"
(TIME SIMP �1)
(FLATTEN)

; Call the value last 1(s 2), b.

(NAME \b" \dur(last 1(s 2))")
(APPLY (REPLACE �1) \Using the name b."

\Note that it would be helpful to have a general strategy
replace names that could periodically be invoked to call
replace on all de�nitions entered via NAME, and perhaps
certain others. Marked de�nitions could be kept hidden
until recalled for this purpose or for a general review
of de�nitions.")

; Call the value t(A 1)(n 1) + dur(xi 1), B.

(NAME \B" \t(A 1)(n 1) + dur(xi 1)")

; Let B glb name the largest index for which t(A 1)(B glb) <= B.

(PUT GLB \A 1" \B")

; Supposition 3: B glb + 1 > n 1.

(CASE \B glb + 1 > n 1")
((\1"

; Note that part of the hypothesis of lemma E 1 is that the gate is either going up or fully up in state s 1.

(NORMALIZE ATEXECS)
(REPLACE �11)

; Supposition A(B): We suppose something that appears, a priori, stronger than the negation of what
; we hope to prove, in order to derive a contradiction: namely, that there is no enterI event from event
; Pi to time B, *and* that the last 1 component of the state after every event from Pi to B has the
; same value last 1(s 2). Actually, the second part is redundant, but is needed in the induction proof
; that comes later.

; We actually state this supposition in a more complex form. This more complex form of Supposition
; A(B) says that every event from the n 1-th event Pi to time B has property A, where property A of
; any m-th event is that every p-th event from event Pi through that m-th event has property A-hat:
; namely, it is not an enterI event and the last 1 component of its result state equals last 1(s 2).

(APPLY (CASE \(forall (m:pos nat): (m >= n 1 & t(A 1)(m) <= B) =>
(forall (p:pos nat): ((n 1 <= p & p <= m) =>
(not (exists (r: train): pi(A 1)(p) = enterI(r)) &
last 1(fstate(w(A 1)(p))) = last 1(s 2)))))")

\Call this assertion A(B). We hope it is not true. Thus, we
expect to obtain a contradiction by assuming it. It says,
in e�ect, that every event before and up to time bound B
is the last in a chain of events starting with Pi that have
the same last 1 value when they occur, and that are not an
enterI.")

((\1"

; In particular, event B glb has property A.

(INST �1 \B glb") *
((\1" * (1.1)

(ASSERT) *

62

; So, event B glb has property A-hat.

(APPLY (INST �1 \B glb") *
\Starting to show that last 1 still has the value it did *
at s 2 when the B glb+1-th event occurs. This uses the *
fact that time has advanced beyond B, in a hidden way| * (1.2)
via lemma last 1 interval. It will lead to a contradiction.") *

(ASSERT) *
(FLATTEN) *

; Let s 3 name the state just after the B glb-th event, and s 4 name the state just before the
; (B glb + 1)-th event.

(APPLY (THEN (NAME \s 3" \fstate(w(A 1)(B glb))")
(NAME \s 4" \lstate(w(A 1)(B glb))"))

\Let s 3 and s 4 be the left and right endpoints of the
B glb-th interval, which spans the time B.")

; A standard lemma says that components of the state other than the \now" component are not
; a�ected by time passage. In particular, the value of last 1 is the same at s 4 as it was at s 3.

(APPLY LEMMA \last 1 interval" (\A 1" \B glb")) *
(NORMALIZE ATEXECS) * (2.1)
(APPLY (THEN (REPLACE�2) (REPLACE �3)) *

\Using the names s 3 and s 4.") *

; Supposition 4: Now(s 4) = t(A 1)(B glb+1).

(CASE \Now(s 4) = t(A 1)(B glb+1)")
((\1"

; Since s 4 is reachable, we can apply the invariant lemma 4 2 1, which says that
; now(s 4) <= last 1(s 4).

(GET REACHABLES \A 1" \B glb") *
(APPLY INV LEMMA \4 2 1" \s 4") * (3.1)
(APPLY (HIDE �2 �3 �4 �5 �6 �7) *

\Remove unneeded reachability info.") *

; But this contradicts what we know about now(s 4): namely, that Now(s 4) = t(A 1)(B glb+1) > B,
; last 1(s 4) = last 1(s 3), last 1(s 3) = last 1(s 2) (because event B glb has property A-hat),
; and last 1(s 2) <= B.

(EXPAND \Now")
(TIME SIMP �1))

; Proof of Supposition 4: Follows from the de�nition of s 4 and standard simpli�cations.

(\2"
(APPLY (REPLACE �2 1 RL)

\Using the def of s 4 in the subgoal consequent.")
(NORMALIZE ATEXECS)
(SIMPLIFY))))

; We prove a TCC showing that B glb is within the range of values for which property A-hat holds,
; given that B glb has property A.

(\2" (ASSERT))))

; We now prove Supposition A(B) by induction on the variable m.

(\2"
(APPLY (THEN (INDUCT \m") (ASSERT))

\Note that inducting this way avoids creating 4 subgoals."

63

\This is the proof of assertion A(B); rather, it is the proof
that if assertion A(B) is false, then one can �nd an enterI
event between Pi and B, which claim is assertion A(B)'s
companion assertion in the subgoal's consequent.")

; The base case and some TCC's were proved by ASSERT, i.e., by the decision procedures,
; simpli�cation, and propositional reasoning in PVS. We prove the induction step.

(APPLY (THEN (SKOLEM 1 \j 1") (FLATTEN)))

; Suppose that j 1 is some integer such that if j 1 > 0 and the j 1-th event is the n 1-th event or later
; and comes before time B, then j 1 has property A. We will show that if the conclusion of lemma E 1
; is false, then if the (j 1 + 1)-th event is the n 1-th event or later and comes before time B, then
; j 1 + 1 has property A. To do this, suppose that indeed the (j 1 + 1)-th event is the n 1-th event
; or later and comes before time B.

; If j 1 + 1 = n 1, it trivially has property A, since pi(A 1)(n 1) = lower and
; last 1(path(w(A 1)(n 1))(t(A 1)(n 1))) = last 1(s 2).

(CASE \j 1+1 = n 1")
((\1" (SKOLEM 1 \p 1") (FLATTEN) (ASSERT))

; So we may assume that j 1 + 1 is greater than n 1.

(\2"

; We may then deduce that j 1 > 0 (since n 1 is positive), and that j 1 >= n 1.

(ASSERT)

; We may also deduce that the j 1-th event comes before time B, because the (j 1 + 1)-th does.

(APPLY (TIME ORDER \A 1" \j 1" \j 1+1") *
\This should mimic doing a SPLIT without getting *
a companion assertion.") * (4.1)

(ASSERT) *
(APPLY (HIDE �1) \Finish the mimicking of SPLIT.") *

; Let p 1 be some positive natural number. We will show that if n 1 <= p 1 <= j 1 + 1, then p 1
; has property A-hat. Since p 1 is arbitrary, it will follow that j 1 + 1 has property A.

(SKOLEM 2 \p 1")

; By inductive hypothesis, if n 1 <= p 1 <= j 1, then p 1 has property A-hat.

(INST �1 \p 1")

; So, suppose that n 1 <= p 1 <= j 1 + 1.

(APPLY (FLATTEN)
\Note, above is an instance of matched skolem + inst.")

; Then if p 1 is in fact less than or equal to j 1, it has property A-hat.

(ASSERT)

; So, consider the case that p 1 = j 1 + 1.

(APPLY (CASE \p 1 = j 1 + 1")
\This is the meaty case, since if p 1 < j 1 + 1, then the
induction hypothesis, which applies to all p 1 between
n 1 and j 1, inclusive, assures that last 1 at p 1 is
the same as at n 1, and that event p 1 is not enterI.")

; Then we will show that either lemma E 1 holds with the p 1-th event being the event Phi that comes
; after Pi and before B that is an enterI, or else p 1 has property A-hat.

64

((\1"
(INST 3 \p 1")
(ASSERT)

; Since the p 1-th event is after Pi, this is equivalent to showing that (1) either the p 1-th event is an
; enterI or p 1 has property A-hat and (2) either the p 1-th event happens before B or p 1 has property
; A-hat.

(SPLIT 3)

; We �rst prove (1).

((\1"

; We recall that the induction hypothesis says that any integer between n 1 and j 1 has property A-hat.

(APPLY (REVEAL �1)
\Grab the general form of the induction hypothesis.")

; This applies in particular to j 1 itself.

(APPLY (INST �1 \j 1") *
\We now prepare to do the real induction step in this *
proof, namely, to show that last 1 is unchanged by *
event j 1 + 1 provided it is not an enterI.") *

(ASSERT) *
* (1.3)

; We will show that either the p 1-th event is an enterI or else last 1 in the state *
; following this event is last 1(s 2). *

*
(APPLY (SPLIT 3) *

\Using a SPLIT to match a complex expression that *
ASSERT missed.") *

; We �rst replace our formulation of the assertion that the p 1-th event is an enterI (given as an
; existentially quanti�ed expression over trains r that might do an enterI action) by the data-type
; recognizer formulation of this assertion: enterI?(pi(A 1)(p 1)).

(APPLY (CASE \enterI?(pi(A 1)(p 1))") *
\Expressing enterI�ness better.") *

((\1" * (G)
(INST 2 \Itrainof(pi(A 1)(p 1))") *
(APPLY�EXTENSIONALITY 2)) *

(\2" *

; We can now proceed with our proof. Since j 1 has property A-hat, the value of last 1 in the state
; following the j 1-th event is last 1(s 2).

(FLATTEN)

; For convenience, we assign names to certain states: s 8 is the state just after the j 1-th event, s 9 is
; the state just before the (j 1 + 1)-th event, and s 10 is the state just after the (j 1 + 1)-th event.

(APPLY (THEN (NAME \s 8" \fstate(w(A 1)(j 1))")
(NAME \s 9" \lstate(w(A 1)(j 1))")
(NAME \s 10" \fstate(w(A 1)(j 1+1))"))

\Name the states relevant to the preservation of
last 1 from the time of event j 1 to that of event
j 1 + 1.")

; We note that the value of last 1 does not change in passing from s 8 to s 9.

(APPLY LEMMA \last 1 interval" (\A 1" \j 1"))

; We also note that s 10 is the state reached by transitioning on the (j 1 + 1)-th action in state s 9.

65

(TRANS FACTS \A 1" \j 1") *
(APPLY (THEN (REPLACE �8) (REPLACE �9)) *

\Note that trans facts has invoked rewriting, and *
thus accomplished a normalize atexecs. We now use * (5.1)
the names s 9 and s 10, which will also help *
to �nd which of the trans facts are not needed.") *

(APPLY (HIDE �2 �3 �4 �5 �6) *
\Hide the irrelevant trans facts.") *

; Since p 1 = j 1 + 1, we know that what we have to prove is that either the (j 1 + 1)-th event is an
; enterI or else last 1(s 10) = last 1(s 2).

(APPLY (THEN (REPLACE �7) (REPLACE �3))
\Using the equality of p 1 to j 1 + 1 and
the de�nition of s 10 to rephrase part of
the consequent to last 1(s 10) = last 1(s 2).")

; We now show that since s 10 is the result of transitioning on the (j 1 + 1)-th action in state s 9, the
; desired conclusion follows.

(APPLY (THEN (REPLACE �1 + RL) (HIDE �1)) *
\Using the trans version of s 10 in the consequent.") * (6.1)

(DO TRANS OPSPEC)))) *

; We prove (2): either the p 1-th event happens before B or p 1 has property A-hat, by showing that
; the p 1-th event indeed happens before B (because we have supposed that the (j 1 + 1)-th event
; does, and we have assumed that p 1 = j 1 + 1).

(\2" (TIME SIMP 1))))

; We now consider the case p 1 < j 1 + 1; but the fact that the p 1-th event has property A-hat for
; any such p 1, which is what we must prove, follows trivially from the inductive hypothesis.

(\2" (ASSERT))))))))

; We now prove Supposition 3: B glb + 1 > n 1. This follows from the fact that the (B glb + 1)-th
; event happens after the n 1-th event.

(\2" (TIME ORDER \A 1" \n 1" \B glb + 1") (ASSERT)))) * (4.2)

; We now prove Supposition 2: last 1(s 2) <= now(s 2) + xi 1.

(\2"
(HIDE 2)

; We �rst isolate the fact that now(s 1) = now(s 2).

(FLATTEN)

; We adduce the fact that state s 2 is the result of transitioning on the n 1-th action Pi on state s 1.

(TRANS FACTS \A 1" \n 1�1") *
(NORMALIZE ATEXECS) *
(APPLY (THEN (REPLACE �7) (REPLACE�8)) \Using the names s 1 and s 2.") * (5.2)
(APPLY (HIDE �2 �3 �4) *

\The object here is to hide all instances of trans that *
are not connected to s 2 or are redundant.") *

; Applying these two facts, together with the knowledge of the e�ect of the lower action Pi in a state
; in which the gate is either going up or fully up, we see that it is enough to show that either
; last 1(s 1) = in�nity or else last 1(s 1) <= now(s 1) + xi 1.

(APPLY (REPLACE �2)
\Using the fact that now(s 2) = now(s 1); note that it is
critical to do this before the next step.")

(APPLY (THEN (REPLACE �1 + RL) (HIDE �1)) *
\Using the trans version of s 2 in the consequent.") * (6.2)

(DO TRANS OPSPEC) *

66

(APPLY (MATCH CONDITION 1)
\Forcing the if-then-else with condition fully up or going up
to simplify as if it were recognized that the condition is
equivalent to going up or fully up.")

(APPLY (MATCH CONDITION 1)
\This splits and attens the new if-then-else, giving the
e�ect of case splitting on last 1(s 1) = in�nity.")

; In the case last 1(s 1) = in�nity, the result is trivial.

((\1" (TIME SIMP 1))

; So, we may assume that last 1(s 1) <> in�nity.

(\2"

; Now, state s 1 is reachable.

(APPLY (GET REACHABLES \A 1" \n 1 � 1") *
\Note that this is one case where one wants to keep both *
assertions in the consequent.") * (3.2)

; Therefore, we can apply the invariant lemma 4 2 3 to s 1: *
(APPLY INV LEMMA \4 2 3" \s 1") *

; which is precisely what is required.

(APPLY (THEN (OPSPEC SIMP 2) (TIME SIMP 2))))))))

; Proof of Supposition 1: The time of Pi, t(A 1)(n 1), equals now(s 1) and now(s 2). This follows
; from standard equivalences, the de�nitions of s 1 and s 2, and standard PVS simpli�cations and
; decision procedures.

(\2"
(APPLY (HIDE 2) \Finally proving the time equivalence facts.")
(APPLY (THEN (REPLACE �1 + RL) (REPLACE �2 + RL))

\Expanding the names s 1 and s 2 in the consequent.")
(NORMALIZE ATEXECS)
(SIMPLIFY))))

E.2 Potential New Strategies for Lemma E.1 from PVS Enhancements

In the annotated proof in Appendix E.1, we have indicated places where six new strategies could be applied,
if we had the tools in PVS to de�ne them. Here, we describe the e�ects (when successful) and possible
implementation of each of these proposed new strategies, and indicate how they would be invoked at each
of the indicated places in the Lemma E.1 proof. As will be seen, all the proposed implementations require
naming, analysis, and recognition capabilities for assertions that are not currently available in PVS. To
avoid repetition, the proposed implementations omit mentioning the anticipated use of assertion naming
by strategies that rely on a lemma; such naming will aid in the recognition and removal of redundant or
irrelevant information generated from the lemma application. The proposed implementations also ignore an
important feature that will need to be incorporated in each: the generation of useful error messages.

(1) (CONCLUDE <proposition> <instantiation>)

E�ect. Puts all conclusions in <proposition>, applied to <instantiation>, in the hypotheses of the current
sequent. <proposition> may be denoted by a tag (this requires enhancement to PVS) or by an assertion
number, and should refer to a current subgoal antecedent formula in the form of a universally quanti�ed
implication whose hypothesis is satis�ed by <instantiation>.

Proposed implementation. Implement by a sequence INST, MODUS PONENS, FLATTEN focussed
on <proposition>, which may be indicated either by a name rather than an assertion number.
MODUS PONENS will be a more sophisticated version of MODUS PONENS as de�ned in Appendix C;

67

it will focus on removing the highest-level hypothesis from an assertion, provided it can be deduced from
other antecedent formulae in a sequent.

Invocations in the Lemma E.1 proof.

(1.1) (CONCLUDE \Claim A(B)" \B glb")

(1.2) (CONCLUDE \Claim A(B) conclusion" \B glb")

(1.3) (CONCLUDE \Claim A(B) ind hyp" \j 1")

Comments. We have used assertion names rather than assertion numbers in these example invocations.
It is anticipated that the assertion name \Claim A(B)" would be provided by the user at the time this
particular assertion was introduced using CASE. Names of the related assertions would be automatically
generated according to the structure of the original assertion (as in \Claim A(B) conclusion") or as the
result of its manipulation by other strategies (such as the call to \(INDUCT \m")", that locates and
then operates on assertion \Claim A(B)").

If one uses ASSERT instead of MODUS PONENS, the invocation (1.1) will handle an associated TCC
automatically. The proposed implementation of CONCLUDE probably will be modi�ed to maximize
the set of cases in which this will happen.

(2) (SAMEVAL <component name> <state 1> <state 2>)

E�ect. Adds the fact that the state function or component <component name> has the same value at
<state 1> and <state 2> to the hypotheses of the current goal.

Proposed implementation. The implementation must rely on the existence of a lemma about
<component name> with a standard derived name that guarantees that <component name> is con-
stant in a trajectory. State arguments that are simply names may have to be looked up in the visible
or hidden part of the antecedent hypothesis list to determine the appropriate relevant atexecs and nat

instantiations for the lemma, and to replace the states in the conclusion of the lemma by their names.

Invocations in the Lemma E.1 proof.

(2.1) (SAMEVAL \last 1" \s 3" \s 4")

Comments. Automatic generation and proof of the necessary supporting lemmas is a possiblity.

(3) (INVARIANT <inv name> <state>)

E�ect. Adds the fact that invariant <inv name> holds for <state> to the hypotheses of the current goal.

Proposed implementation. Use GET REACHABLES to retrieve information about the reachability of
states in the neighborhood of <state>. This neighborhood can be deduced from the arguments of types
atexecs and nat in the representation of <state>, which, in turn, will either be explicitly present or
retrievable from some visible or hidden equality in the current goal. This information can be retrieved,
used in the call to APPLY INV LEMMA, and then hidden.

Invocations in the Lemma E.1 proof.

(3.1) (INVARIANT \4 2 1" \s 4")

(3.2) (INVARIANT \4 2 3" \s 1")

Comments. The retrieval of reachability information about <state> could include a check on whether this
information is present in either the visible or hidden part of the current goal, if this increases e�ciency.

(4) (TIME RELATION <index 1> <index 2>)

E�ect. Puts the fact that event <index 1> comes before event <index 2>, or vice-versa (whichever is
correct) in the hypotheses of the current goal.

68

Proposed implementation. Use the strategy TIME ORDER, followed by ASSERT (to deduce and apply
the appropriate inequality between <index 1> and <index 2>); then hide or delete the extra assertion
generated (that relates to the \inappropriate" inequality).

Invocations in the Lemma E.1 proof.

(4.1) (TIME RELATION \j 1" \j 1 + 1")

(4.2) (TIME RELATION \n 1" \B glb + 1")

Comments. An argument of type atexecs may also be added to this strategy. The alternative is to provide
some means to retrieve the appropriate instantiation or instantiations from the current goal. When
reasoning about properties of one timed automaton, there will typically be only one such instantiation.
When reasoning about simulations between timed automata, there may be two.

(5) (TRANS RELATION <state 1> <state 2>)

E�ect. Puts the fact that <state 2> is the result of a transition from <state 1>, or vice-versa, in the
antecedent, with an instantiation of the action associated with the transition.

Proposed implementation. The neighborhood of <state 1> and <state 2> (that is, the relevant atexecs
and nat values) are retrieved either directly or by looking state names up in the visible or hidden part
of the antecedent of the current goal. The strategy TRANS FACTS can then be invoked to get all likely
candidates for the transition relation. State values are then normalized by NORMALIZE ATEXECS,
and those equal to <state 1> and <state 2> are replaced by <state 1> and <state 2>. Irrelevant
or redundant assertions generated by TRANS FACTS are then removed; these are recognized by a
combination of name and content.

Invocations in the Lemma E.1 proof.

(5.1) (TRANS RELATION \s 9" \s 10")

(5.2) (TRANS RELATION \s 1" \s 2")

Comments. If <state 1> and <state 2> are expressions rather than names, replacing equal state values by
these names will require some care, since these expressions may be altered by NORMALIZE ATEXECS.

(6) (COMPUTE TRANS <state> <assertion>)

E�ect. Replaces <state> in <assertion> by its value computed as the result of a transition.

Proposed implementation. If the representation of <state> as the result of at transition is present in
the antecedent of the current goal, it can be recognized, and used to replace <state> in <assertion>. A
version of DO TRANS that focusses only on <assertion> can then be applied.

Invocations in the Lemma E.1 proof.

(6.1) (COMPUTE TRANS \s 10" \Claim A(B) ind concl")

(6.2) (COMPUTE TRANS \s 2" \Supposition 2")

Comments. DO TRANS is timed-automaton-dependent, since it calls the standard simpli�cation strategy
of the timed automaton in which the transition takes place. However, the name of the timed automaton,
and hence that of its simpli�cation strategy, could be deduced from the type information for <state>.

Note that we have marked one sequence in the proof of Lemma E.1 with an \(G)". At point \(G)",
the representation of a certain fact in the sequent is changed by supplying a rather cryptic instantiation
and applying the PVS strategy APPLY-EXTENSIONALITY. Both representations of the particular fact
correspond to the same high-level English language description \the p 1-th event is an enterI event". Thus,
sequence \(G)" does not exactly correspond to any step in an English language proof of Lemma E.1; the need
for it in the PVS proof is really an artifact of the representation in PVS of the timed automaton OpSpec.
\(G)" may be one example of a point where a certain amount of \PVS glue" is required in translating from
hand proof to PVS.

69

F Appendix. A Second PVS Template for Timed Automata

The theory timed auto decls, if used as one of the �xed underlying template theories, is designed to allow
the PVS typechecker to enforce many of the template conventions, such as the existence of a time passage
action, the usage of the separate parts of enabled, the fact that the now component of a start state must
be zero, and so on. It has an accompanying theory, timed auto thy, which we do not show since it is
essentially identical to the theory opspec strat aux (see Appendix B.3).

One of the bene�ts of including the two theories among the �xed template theories is that the lemmas
in timed auto thy become independent of the automaton being speci�ed, and can be pre-proved prior to
specifying any particular timed automaton. They do not then have to be re-proved in order to be used (by
way of our specialized strategies or otherwise) in constructing \guaranteed sound" PVS proofs of properties
of a particular timed automaton.

We �rst present the theory timed auto decls, and then show how the timed automaton OpSpec would
be de�ned in PVS using the resulting new template.

F.1 Appendix. The Theory timed auto decls

timed auto decls [basic states, actions: TYPE,
% Importing time thy de�nes the type \time" that behaves like the non-negative
% reals except for having an in�nite value included.

(IMPORTING time thy,
% Importing states[...] de�nes the type states, whose elements are records with
% indices \basic" (basic states),\now" (a (�ntime?) value), \�rst" and \last"
% (maps from actions to time).

states[actions,basic states,time,�ntime?])
nu: [(�ntime?) -> actions],
nu?: [actions -> bool],
timeof: [(nu?) -> (�ntime?)],

% The \start" predicate on states is split into three parts to emphasize its
% structure and to enforce \now(s) = zero".

basic start: [basic states -> bool],
�rst start: [basic states,actions -> time],
last start: [basic states,actions -> time],

% The \trans" operation of actions on states is also split into three parts to
% emphasize its independence from \now" except in the special case of a
% time-step action nu.

basic trans: [[actions,states] -> basic states],
�rst trans: [[actions,states] -> [actions->time]],
last trans: [[actions,states] -> [actions->time]],
enabled speci�c: [[actions,states] -> bool],
OKstate?: [states -> bool]] : THEORY

% The theory timed auto decls is the main template speci�cation for timed automata. Instantiation
% of this template is done by importing the companion speci�cation timed auto thy with the
% appropriate parameters.

% The expected instantiations of the speci�cation parameters to timed auto decls and timed auto thy
% are as follows:

% basic states: some encoding of that part of the states that is separate from the \now"
% component (a time value) and the \�rst" and \last" components (maps from actions
% (events) to time).

70

% actions: an abstract data type whose members are actions, that contains a \nu" action
% parameterized by (non-zero, non-in�nite) time.

% nu: the time-step element of \actions", parameterized by \(�ntime?)"

% nu?: a predicate on actions that identi�es just when an action is a \nu" time-step action.

% timeof: extracts the \time" parameter from time-step actions.

% basic start: the predicate that identi�es the basic parts of start states.

% �rst start: the function that maps states and actions to the initial \�rst" value for that
% action with respect to the basic part of the state.

% last start: the function that maps states and actions to the initial `last" value for that
% action with respect to the basic part of the state.

% basic trans: this is the part of \trans" that does not deal with changes to \now", \�rst" and
% \last".

% �rst trans: this is the part of \trans" that describes how one action a�ects the \�rst" time of
% another.

% last trans: this is the part of \trans" that describes how one action a�ects the \last" time of
% another.

% enabled speci�c: this is the part of enabled that maps an action to the non-default part of the
% pre-condition predicate on the state.

% OKstate?: this is a predicate on states that can be used to enforce one or more state invariants
% by restricting the reachable states directly.

BEGIN

% Before importing atexecs, one needs to de�ne start, Now, step?, and nu; step? depends on the
% de�nitions of enabled and trans, so must de�ne these also. Note that one can then go ahead and
% import machine as well.

start(s:states):bool = (s = (# basic := basic(s),
now := zero,
�rst := (LAMBDA(a:actions): �rst start(basic(s),a)),
last := (LAMBDA(a:actions): last start(basic(s),a)) #)

& basic start(basic(s)));

Now(s:states):fr:real j r >= 0g = dur(now(s));

Nu (z: fz:real j z>0g): actions = nu(�ntime(z: fz:real j z>=0g));

trans(a:actions,s:states):states =
IF nu?(a) THEN s WITH [now := now(s) + timeof(a)]
ELSE s WITH [basic := basic trans(a,s),

�rst := (LAMBDA(b:actions):�rst trans(b,s)(a)),
last := (LAMBDA(b:actions):last trans(b,s)(a))]

ENDIF;

enabled general(a:actions,s:states):bool =
IF nu?(a) THEN dur(timeof(a))> 0 ELSE �rst(s)(a) <= now(s) & now(s)<= last(s)(a) ENDIF;

enabled(a:actions,s:states):bool =
enabled general(a,s) & enabled speci�c(a,s) & OKstate?(trans(a,s));

step? (s1:states, a:actions, s2:states): bool = enabled(a,s1) & s2 = trans(a,s1);

IMPORTING atexecs [states, actions, start, Now, step?, Nu]
IMPORTING machine[states, actions, enabled, trans, start]

END timed auto decls

71

F.2 Appendix. The Timed Automaton OpSpec in PVS: Version 2

The speci�cation of the theory opspec in the alternative template (and actually, the new template itself) is
rather more messy, than the speci�cation in B.3, since certain functions have been decomposed into several
functions. However, at least some of this messiness could be hidden by an appropriate interface external to
PVS.

opspec decls: THEORY

BEGIN

train: TYPE

r,r1: VAR train

IMPORTING time thy

beta posreal: fr:real j r > 0g;
delta t: VAR (�ntime?)
eps 1, eps 2, gamma down, gamma up, xi 1, xi 2, delta: (�ntime?)
beta:(�ntime?) = �ntime(beta posreal:fr:real j r >= 0g);

const facts: AXIOM (eps 1 <= eps 2
& eps 1 > gamma down
& xi 1 >= gamma down + beta + eps 2 � eps 1
& xi 2 >= gamma up);

actions : DATATYPE

BEGIN
nu(timeof:(�ntime?)): nu?
enterR(Rtrainof:train): enterR?
enterI(Itrainof:train): enterI?
exit(Etrainof:train): exit?
lower: lower?
raise: raise?
up: up?
down: down?

END actions;

a: VAR actions;

train status: TYPE = fnot here,P,Ig;

gate status: TYPE = ffully up,fully down,going up,going downg;

basic states: TYPE = [# trains part: [train �> train status],
gate part: gate status,
last 1 part, last 2 up part, last 2 I part: time #];

IMPORTING states[actions,basic states,time,�ntime?]

s1: VAR states;
b: VAR basic states;

status(r:train, s:states):train status = trains part(basic(s))(r);

gate status(s:states):gate status = gate part(basic(s));

last 1(s:states):time = last 1 part(basic(s));

last 2 up(s:states):time = last 2 up part(basic(s));

last 2 I(s:states):time = last 2 I part(basic(s));

OKstate? (s:states): bool = ((EXISTS (r:train): status(r,s) = I) => gate status(s) = fully down);

72

enabled speci�c (a:actions, s:states):bool =
CASES a OF
enterR(r): status(r,s) = not here,
enterI(r): status(r,s) = P & �rst(s)(a) <= now(s),
exit(r): status(r,s) = I,
nu(delta t): (delta t > zero

& (FORALL r: now(s) + delta t <= last(s)(enterI(r)))
& now(s) + delta t <= last(s)(up)
& now(s) + delta t <= last(s)(down)
& now(s) + delta t <= last 1(s)
& now(s) + delta t <= last 2 I(s)),

lower: true,
raise: true,
up: gate status(s) = going up,
down: gate status(s) = going down

ENDCASES;

basic trans (a:actions, s:states):basic states =
CASES a OF
enterR(r): basic(s) WITH [trains part := trains part(basic(s)) WITH [r := P]],
enterI(r): basic(s) WITH

[trains part := trains part(basic(s)) WITH [r := I],
last 1 part := in�nity,
last 2 up part := in�nity,
last 2 I part := in�nity],

exit(r): LET b = basic(s) WITH [trains part:= trains part(basic(s)) WITH [r:= not here]]
IN IF (FORALL (r1: train): (NOT (r1 = r)) => (NOT status(r1,s) = I))

THEN b WITH
[last 2 up part := now(s) + xi 2,
last 2 I part := now(s) + xi 2 + delta + xi 1]

ELSE b ENDIF,
nu(delta t): basic(s),
lower: IF gate status (s) = fully up OR gate status(s) = going up

THEN LET b = basic(s) WITH [gate part := going down]
IN IF last 1(s) = in�nity

THEN b WITH [last 1 part:= now(s)+xi 1]
ELSE b ENDIF

ELSE basic(s) ENDIF,
raise: IF gate status(s) = fully down OR gate status(s) = going down

THEN basic(s) WITH [gate part := going up]
ELSE basic(s) ENDIF,

up: LET b = basic(s) WITH [gate part := fully up]
IN IF now(s) <= last 2 up(s)

THEN b WITH [last 2 up part:= in�nity, last 2 I part:= in�nity]
ELSE b ENDIF,

down: basic(s) WITH [gate part := fully down]
ENDCASES

�rst trans (a:actions, s:states):[actions�>time] =
CASES a OF
enterR(r): �rst(s) WITH [(enterI(r)) := now(s) + eps 1],
enterI(r): �rst(s) WITH [(enterI(r)) := zero]

ELSE �rst(s)
ENDCASES

73

last trans (a:actions, s:states):[actions�>time] =
CASES a OF
enterR(r): last(s) WITH [(enterI(r)) := now(s)+eps 2],
enterI(r): last(s) WITH [(enterI(r)) := in�nity],
exit(r): last(s),
nu(delta t): last(s),
lower: IF gate status (s) = fully up OR gate status(s) = going up

THEN last(s) WITH [down := now(s)+gamma down, up := in�nity]
ELSE last(s) ENDIF,

raise: IF gate status(s) = fully down OR gate status(s) = going down
THEN last(s) WITH [up := now(s)+gamma up, down := in�nity]
ELSE last(s) ENDIF,

up: last(s) WITH [up := in�nity],
down: last(s) WITH [down := in�nity]

ENDCASES

basic start (b:basic states):bool =
b = (# trains part := (LAMBDA r: not here),

gate part := fully up,
last 1 part := in�nity,
last 2 up part := in�nity,
last 2 I part := in�nity #);

�rst start (b:basic states, a:actions):time = zero;

last start (b:basic states, a:actions):time = in�nity;

IMPORTING timed auto thy [basic states, actions, nu, nu?, timeof,
basic start, �rst start, last start,
basic trans, �rst trans, last trans,
enabled speci�c, OKstate?]

END opspec decls

74

